{"title":"利用iPS细胞技术制备血小板;大规模制造。","authors":"Koji Eto","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Induced pluripotent stem cell (iPSC) derived-platelet like particle product (iPS-platelets) is aimed to complement the current blood donor-dependent system, which is expecting the shortage of blood donors in the younger population due to the aging societies in developed countries and platelet transfusion refractoriness due to alloimmune responses. One of the strategies is to establish expandable megakaryocyte lines as a source of manufacturing cGMP grade platelets. Additionally, by scaling up of the bioreactor with novel physical parameters in optimal range, more than 100 billion iPS-platelets were produced in a 8L newly developed reactor tank towards supply of an one unit platelets concentrate (300 billion of platelets, USA). In vitro and in vivo evaluation of iPS-platelets showed the functionality comparable with donor-derived platelets. We further plan to establish the proof-of-concept of the universal HLA class-I knocked out platelets towards clinical application and the further industrial production.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971380/pdf/jsrm_15_52.pdf","citationCount":"0","resultStr":"{\"title\":\"Platelets using iPS cell technology; large scale manufacturing.\",\"authors\":\"Koji Eto\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Induced pluripotent stem cell (iPSC) derived-platelet like particle product (iPS-platelets) is aimed to complement the current blood donor-dependent system, which is expecting the shortage of blood donors in the younger population due to the aging societies in developed countries and platelet transfusion refractoriness due to alloimmune responses. One of the strategies is to establish expandable megakaryocyte lines as a source of manufacturing cGMP grade platelets. Additionally, by scaling up of the bioreactor with novel physical parameters in optimal range, more than 100 billion iPS-platelets were produced in a 8L newly developed reactor tank towards supply of an one unit platelets concentrate (300 billion of platelets, USA). In vitro and in vivo evaluation of iPS-platelets showed the functionality comparable with donor-derived platelets. We further plan to establish the proof-of-concept of the universal HLA class-I knocked out platelets towards clinical application and the further industrial production.</p>\",\"PeriodicalId\":17155,\"journal\":{\"name\":\"Journal of Stem Cells & Regenerative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971380/pdf/jsrm_15_52.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stem Cells & Regenerative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells & Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Platelets using iPS cell technology; large scale manufacturing.
Induced pluripotent stem cell (iPSC) derived-platelet like particle product (iPS-platelets) is aimed to complement the current blood donor-dependent system, which is expecting the shortage of blood donors in the younger population due to the aging societies in developed countries and platelet transfusion refractoriness due to alloimmune responses. One of the strategies is to establish expandable megakaryocyte lines as a source of manufacturing cGMP grade platelets. Additionally, by scaling up of the bioreactor with novel physical parameters in optimal range, more than 100 billion iPS-platelets were produced in a 8L newly developed reactor tank towards supply of an one unit platelets concentrate (300 billion of platelets, USA). In vitro and in vivo evaluation of iPS-platelets showed the functionality comparable with donor-derived platelets. We further plan to establish the proof-of-concept of the universal HLA class-I knocked out platelets towards clinical application and the further industrial production.