Se Eun Han, Su Jin Kim, Young Il Kim, Il Sung Nam-Goong, Hyo Won Jung, Eun Sook Kim
{"title":"阿格列汀对C2C12小鼠骨骼肌细胞成肌细胞分化及线粒体生物遗传因子表达的促进作用。","authors":"Se Eun Han, Su Jin Kim, Young Il Kim, Il Sung Nam-Goong, Hyo Won Jung, Eun Sook Kim","doi":"10.1111/1440-1681.13255","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the regulatory effects of anagliptin, a DPP-IV inhibitor used to treat type 2 diabetes mellitus (T2DM), on myoblast differentiation and mitochondrial biogenesis in C2C12 mouse skeletal muscle cells. C2C12 myoblasts were differentiated into myotubes and then treated with anagliptin (10, 25, and 50 μmol/L) for 24 hours. In C2C12 myotubes, anagliptin treatment was significantly increased the expression of MHC, PGC1α, Sirt-1, NRF-1, and TFAM and the phosphorylation of AMPK and ACC in a concentration-dependent manner. Anagliptin also significantly increased the total ATP levels in the myotubes. These results suggest that anagliptin can help prevent skeletal muscle dysfunction in T2DM by promotion of myoblast differentiation and enhancement of energy production via upregulation of mitochondrial biogenetic factors and activation of the AMPK/ACC signalling pathway.</p>","PeriodicalId":10259,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"47 5","pages":"903-906"},"PeriodicalIF":2.5000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1440-1681.13255","citationCount":"2","resultStr":"{\"title\":\"Enhancing effects of anagliptin on myoblast differentiation and the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cells.\",\"authors\":\"Se Eun Han, Su Jin Kim, Young Il Kim, Il Sung Nam-Goong, Hyo Won Jung, Eun Sook Kim\",\"doi\":\"10.1111/1440-1681.13255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the regulatory effects of anagliptin, a DPP-IV inhibitor used to treat type 2 diabetes mellitus (T2DM), on myoblast differentiation and mitochondrial biogenesis in C2C12 mouse skeletal muscle cells. C2C12 myoblasts were differentiated into myotubes and then treated with anagliptin (10, 25, and 50 μmol/L) for 24 hours. In C2C12 myotubes, anagliptin treatment was significantly increased the expression of MHC, PGC1α, Sirt-1, NRF-1, and TFAM and the phosphorylation of AMPK and ACC in a concentration-dependent manner. Anagliptin also significantly increased the total ATP levels in the myotubes. These results suggest that anagliptin can help prevent skeletal muscle dysfunction in T2DM by promotion of myoblast differentiation and enhancement of energy production via upregulation of mitochondrial biogenetic factors and activation of the AMPK/ACC signalling pathway.</p>\",\"PeriodicalId\":10259,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"47 5\",\"pages\":\"903-906\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/1440-1681.13255\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/1440-1681.13255\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1440-1681.13255","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Enhancing effects of anagliptin on myoblast differentiation and the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cells.
To investigate the regulatory effects of anagliptin, a DPP-IV inhibitor used to treat type 2 diabetes mellitus (T2DM), on myoblast differentiation and mitochondrial biogenesis in C2C12 mouse skeletal muscle cells. C2C12 myoblasts were differentiated into myotubes and then treated with anagliptin (10, 25, and 50 μmol/L) for 24 hours. In C2C12 myotubes, anagliptin treatment was significantly increased the expression of MHC, PGC1α, Sirt-1, NRF-1, and TFAM and the phosphorylation of AMPK and ACC in a concentration-dependent manner. Anagliptin also significantly increased the total ATP levels in the myotubes. These results suggest that anagliptin can help prevent skeletal muscle dysfunction in T2DM by promotion of myoblast differentiation and enhancement of energy production via upregulation of mitochondrial biogenetic factors and activation of the AMPK/ACC signalling pathway.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.