{"title":"人工智能在推进精准医学方面的机遇。","authors":"Fabian V Filipp","doi":"10.1007/s40142-019-00177-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>We critically evaluate the future potential of machine learning (ML), deep learning (DL), and artificial intelligence (AI) in precision medicine. The goal of this work is to show progress in ML in digital health, to exemplify future needs and trends, and to identify any essential prerequisites of AI and ML for precision health.</p><p><strong>Recent findings: </strong>High-throughput technologies are delivering growing volumes of biomedical data, such as large-scale genome-wide sequencing assays; libraries of medical images; or drug perturbation screens of healthy, developing, and diseased tissue. Multi-omics data in biomedicine is deep and complex, offering an opportunity for data-driven insights and automated disease classification. Learning from these data will open our understanding and definition of healthy baselines and disease signatures. State-of-the-art applications of deep neural networks include digital image recognition, single-cell clustering, and virtual drug screens, demonstrating breadths and power of ML in biomedicine.</p><p><strong>Summary: </strong>Significantly, AI and systems biology have embraced big data challenges and may enable novel biotechnology-derived therapies to facilitate the implementation of precision medicine approaches.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40142-019-00177-4","citationCount":"38","resultStr":"{\"title\":\"Opportunities for Artificial Intelligence in Advancing Precision Medicine.\",\"authors\":\"Fabian V Filipp\",\"doi\":\"10.1007/s40142-019-00177-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>We critically evaluate the future potential of machine learning (ML), deep learning (DL), and artificial intelligence (AI) in precision medicine. The goal of this work is to show progress in ML in digital health, to exemplify future needs and trends, and to identify any essential prerequisites of AI and ML for precision health.</p><p><strong>Recent findings: </strong>High-throughput technologies are delivering growing volumes of biomedical data, such as large-scale genome-wide sequencing assays; libraries of medical images; or drug perturbation screens of healthy, developing, and diseased tissue. Multi-omics data in biomedicine is deep and complex, offering an opportunity for data-driven insights and automated disease classification. Learning from these data will open our understanding and definition of healthy baselines and disease signatures. State-of-the-art applications of deep neural networks include digital image recognition, single-cell clustering, and virtual drug screens, demonstrating breadths and power of ML in biomedicine.</p><p><strong>Summary: </strong>Significantly, AI and systems biology have embraced big data challenges and may enable novel biotechnology-derived therapies to facilitate the implementation of precision medicine approaches.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40142-019-00177-4\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40142-019-00177-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40142-019-00177-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Opportunities for Artificial Intelligence in Advancing Precision Medicine.
Purpose of review: We critically evaluate the future potential of machine learning (ML), deep learning (DL), and artificial intelligence (AI) in precision medicine. The goal of this work is to show progress in ML in digital health, to exemplify future needs and trends, and to identify any essential prerequisites of AI and ML for precision health.
Recent findings: High-throughput technologies are delivering growing volumes of biomedical data, such as large-scale genome-wide sequencing assays; libraries of medical images; or drug perturbation screens of healthy, developing, and diseased tissue. Multi-omics data in biomedicine is deep and complex, offering an opportunity for data-driven insights and automated disease classification. Learning from these data will open our understanding and definition of healthy baselines and disease signatures. State-of-the-art applications of deep neural networks include digital image recognition, single-cell clustering, and virtual drug screens, demonstrating breadths and power of ML in biomedicine.
Summary: Significantly, AI and systems biology have embraced big data challenges and may enable novel biotechnology-derived therapies to facilitate the implementation of precision medicine approaches.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.