基于SMO算法的离子配体结合位点识别。

IF 2.4 3区 生物学 Q4 CELL BIOLOGY
Shan Wang, Xiuzhen Hu, Zhenxing Feng, Xiaojin Zhang, Liu Liu, Kai Sun, Shuang Xu
{"title":"基于SMO算法的离子配体结合位点识别。","authors":"Shan Wang,&nbsp;Xiuzhen Hu,&nbsp;Zhenxing Feng,&nbsp;Xiaojin Zhang,&nbsp;Liu Liu,&nbsp;Kai Sun,&nbsp;Shuang Xu","doi":"10.1186/s12860-019-0237-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In many important life activities, the execution of protein function depends on the interaction between proteins and ligands. As an important protein binding ligand, the identification of the binding site of the ion ligands plays an important role in the study of the protein function.</p><p><strong>Results: </strong>In this study, four acid radical ion ligands (NO<sub>2</sub><sup>-</sup>,CO<sub>3</sub><sup>2-</sup>,SO<sub>4</sub><sup>2-</sup>,PO<sub>4</sub><sup>3-</sup>) and ten metal ion ligands (Zn<sup>2+</sup>,Cu<sup>2+</sup>,Fe<sup>2+</sup>,Fe<sup>3+</sup>,Ca<sup>2+</sup>,Mg<sup>2+</sup>,Mn<sup>2+</sup>,Na<sup>+</sup>,K<sup>+</sup>,Co<sup>2+</sup>) are selected as the research object, and the Sequential minimal optimization (SMO) algorithm based on sequence information was proposed, better prediction results were obtained by 5-fold cross validation.</p><p><strong>Conclusions: </strong>An efficient method for predicting ion ligand binding sites was presented.</p>","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":"20 Suppl 3","pages":"53"},"PeriodicalIF":2.4000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12860-019-0237-9","citationCount":"8","resultStr":"{\"title\":\"Recognizing ion ligand binding sites by SMO algorithm.\",\"authors\":\"Shan Wang,&nbsp;Xiuzhen Hu,&nbsp;Zhenxing Feng,&nbsp;Xiaojin Zhang,&nbsp;Liu Liu,&nbsp;Kai Sun,&nbsp;Shuang Xu\",\"doi\":\"10.1186/s12860-019-0237-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In many important life activities, the execution of protein function depends on the interaction between proteins and ligands. As an important protein binding ligand, the identification of the binding site of the ion ligands plays an important role in the study of the protein function.</p><p><strong>Results: </strong>In this study, four acid radical ion ligands (NO<sub>2</sub><sup>-</sup>,CO<sub>3</sub><sup>2-</sup>,SO<sub>4</sub><sup>2-</sup>,PO<sub>4</sub><sup>3-</sup>) and ten metal ion ligands (Zn<sup>2+</sup>,Cu<sup>2+</sup>,Fe<sup>2+</sup>,Fe<sup>3+</sup>,Ca<sup>2+</sup>,Mg<sup>2+</sup>,Mn<sup>2+</sup>,Na<sup>+</sup>,K<sup>+</sup>,Co<sup>2+</sup>) are selected as the research object, and the Sequential minimal optimization (SMO) algorithm based on sequence information was proposed, better prediction results were obtained by 5-fold cross validation.</p><p><strong>Conclusions: </strong>An efficient method for predicting ion ligand binding sites was presented.</p>\",\"PeriodicalId\":9099,\"journal\":{\"name\":\"BMC Molecular and Cell Biology\",\"volume\":\"20 Suppl 3\",\"pages\":\"53\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12860-019-0237-9\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Molecular and Cell Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12860-019-0237-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Molecular and Cell Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-019-0237-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 8

摘要

背景:在许多重要的生命活动中,蛋白质功能的执行依赖于蛋白质与配体之间的相互作用。离子配体作为一种重要的蛋白质结合配体,其结合位点的鉴定对蛋白质功能的研究具有重要作用。结果:本研究选取了4种酸性自由基离子配体(NO2-、CO32-、SO42-、PO43-)和10种金属离子配体(Zn2+、Cu2+、Fe2+、Fe3+、Ca2+、Mg2+、Mn2+、Na+、K+、Co2+)作为研究对象,提出了基于序列信息的序贯最小优化(SMO)算法,通过5倍交叉验证获得了较好的预测结果。结论:提出了一种预测离子配体结合位点的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recognizing ion ligand binding sites by SMO algorithm.

Recognizing ion ligand binding sites by SMO algorithm.

Recognizing ion ligand binding sites by SMO algorithm.

Recognizing ion ligand binding sites by SMO algorithm.

Background: In many important life activities, the execution of protein function depends on the interaction between proteins and ligands. As an important protein binding ligand, the identification of the binding site of the ion ligands plays an important role in the study of the protein function.

Results: In this study, four acid radical ion ligands (NO2-,CO32-,SO42-,PO43-) and ten metal ion ligands (Zn2+,Cu2+,Fe2+,Fe3+,Ca2+,Mg2+,Mn2+,Na+,K+,Co2+) are selected as the research object, and the Sequential minimal optimization (SMO) algorithm based on sequence information was proposed, better prediction results were obtained by 5-fold cross validation.

Conclusions: An efficient method for predicting ion ligand binding sites was presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Molecular and Cell Biology
BMC Molecular and Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.50
自引率
0.00%
发文量
46
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信