通过了解控制易感性和耐药性的机制来振兴消泡剂。

IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics
MedChemComm Pub Date : 2019-05-08 eCollection Date: 2019-06-01 DOI:10.1039/c9md00078j
Shannon Lynn Kordus, Anthony David Baughn
{"title":"通过了解控制易感性和耐药性的机制来振兴消泡剂。","authors":"Shannon Lynn Kordus, Anthony David Baughn","doi":"10.1039/c9md00078j","DOIUrl":null,"url":null,"abstract":"<p><p>In prokaryotes and eukaryotes, folate (vitamin B<sub>9</sub>) is an essential metabolic cofactor required for all actively growing cells. Specifically, folate serves as a one-carbon carrier in the synthesis of amino acids (such as methionine, serine, and glycine), <i>N</i>-formylmethionyl-tRNA, coenzyme A, purines and thymidine. Many microbes are unable to acquire folates from their environment and rely on <i>de novo</i> folate biosynthesis. In contrast, mammals lack the <i>de novo</i> folate biosynthesis pathway and must obtain folate from commensal microbiota or the environment using proton-coupled folate transporters. The essentiality and dichotomy between mammalian and bacterial folate biosynthesis and utilization pathways make it an ideal drug target for the development of antimicrobial agents and cancer chemotherapeutics. In this minireview, we discuss general aspects of folate biosynthesis and the underlying mechanisms that govern susceptibility and resistance of organisms to antifolate drugs.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":"10 6","pages":"880-895"},"PeriodicalIF":3.5970,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595967/pdf/MD-010-C9MD00078J.pdf","citationCount":"0","resultStr":"{\"title\":\"Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance.\",\"authors\":\"Shannon Lynn Kordus, Anthony David Baughn\",\"doi\":\"10.1039/c9md00078j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In prokaryotes and eukaryotes, folate (vitamin B<sub>9</sub>) is an essential metabolic cofactor required for all actively growing cells. Specifically, folate serves as a one-carbon carrier in the synthesis of amino acids (such as methionine, serine, and glycine), <i>N</i>-formylmethionyl-tRNA, coenzyme A, purines and thymidine. Many microbes are unable to acquire folates from their environment and rely on <i>de novo</i> folate biosynthesis. In contrast, mammals lack the <i>de novo</i> folate biosynthesis pathway and must obtain folate from commensal microbiota or the environment using proton-coupled folate transporters. The essentiality and dichotomy between mammalian and bacterial folate biosynthesis and utilization pathways make it an ideal drug target for the development of antimicrobial agents and cancer chemotherapeutics. In this minireview, we discuss general aspects of folate biosynthesis and the underlying mechanisms that govern susceptibility and resistance of organisms to antifolate drugs.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\"10 6\",\"pages\":\"880-895\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595967/pdf/MD-010-C9MD00078J.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/c9md00078j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/c9md00078j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

在原核生物和真核生物中,叶酸(维生素B9)是所有活跃生长的细胞所需的重要代谢辅因子。具体而言,叶酸在氨基酸(如甲硫氨酸、丝氨酸和甘氨酸)、N-甲酰甲氧基-tRNA、辅酶a、嘌呤和胸苷的合成中起单碳载体的作用。许多微生物无法从环境中获得叶酸,而是依赖于叶酸的从头生物合成。相反,哺乳动物缺乏新的叶酸生物合成途径,必须使用质子偶联的叶酸转运蛋白从共生微生物群或环境中获得叶酸。哺乳动物和细菌叶酸生物合成和利用途径之间的重要性和二分法使其成为开发抗菌剂和癌症化疗药物的理想药物靶点。在这篇小型综述中,我们讨论了叶酸生物合成的一般方面,以及控制生物体对抗叶酸药物易感性和耐药性的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance.

Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance.

Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance.

Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance.

In prokaryotes and eukaryotes, folate (vitamin B9) is an essential metabolic cofactor required for all actively growing cells. Specifically, folate serves as a one-carbon carrier in the synthesis of amino acids (such as methionine, serine, and glycine), N-formylmethionyl-tRNA, coenzyme A, purines and thymidine. Many microbes are unable to acquire folates from their environment and rely on de novo folate biosynthesis. In contrast, mammals lack the de novo folate biosynthesis pathway and must obtain folate from commensal microbiota or the environment using proton-coupled folate transporters. The essentiality and dichotomy between mammalian and bacterial folate biosynthesis and utilization pathways make it an ideal drug target for the development of antimicrobial agents and cancer chemotherapeutics. In this minireview, we discuss general aspects of folate biosynthesis and the underlying mechanisms that govern susceptibility and resistance of organisms to antifolate drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MedChemComm
MedChemComm BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
2.2 months
期刊介绍: Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry. In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信