Amir Hameed, Muhammad Aamer Mehmood, Muhammad Shahid, Shabih Fatma, Aysha Khan, Sumbal Ali
{"title":"马铃薯基因组编辑技术在抗病毒和冷致变甜方面的应用前景。","authors":"Amir Hameed, Muhammad Aamer Mehmood, Muhammad Shahid, Shabih Fatma, Aysha Khan, Sumbal Ali","doi":"10.1080/21645698.2019.1631115","DOIUrl":null,"url":null,"abstract":"<p><p>Crop improvement through transgenic technologies is commonly tagged with GMO (genetically-modified-organisms) where the presence of transgene becomes a big question for the society and the legislation authorities. However, new plant breeding techniques like CRISPR/Cas9 system [clustered regularly interspaced palindromic repeats (CRISPR)-associated 9] can overcome these limitations through transgene-free products. Potato (<i>Solanum tuberosum</i> L.) being a major food crop has the potential to feed the rising world population. Unfortunately, the cultivated potato suffers considerable production losses due to several pre- and post-harvest stresses such as plant viruses (majorly RNA viruses) and cold-induced sweetening (CIS; the conversion of sucrose to glucose and fructose inside cell vacuole). A number of strategies, ranging from crop breeding to genetic engineering, have been employed so far in potato for trait improvement. Recently, new breeding techniques have been utilized to knock-out potato genes/factors like eukaryotic translation initiation factors [<i>elF4E</i> and isoform <i>elF(iso)4E</i>)], that interact with viruses to assist viral infection, and vacuolar invertase, a core enzyme in CIS. In this context, CRISPR technology is predicted to reduce the cost of potato production and is likely to pass through the regulatory process being marker and transgene-free. The current review summarizes the potential application of the CRISPR/Cas9 system for traits improvement in potato. Moreover, the prospects for engineering resistance against potato fungal pathogens and current limitations/challenges are discussed.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"11 4","pages":"185-205"},"PeriodicalIF":4.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2019.1631115","citationCount":"9","resultStr":"{\"title\":\"Prospects for potato genome editing to engineer resistance against viruses and cold-induced sweetening.\",\"authors\":\"Amir Hameed, Muhammad Aamer Mehmood, Muhammad Shahid, Shabih Fatma, Aysha Khan, Sumbal Ali\",\"doi\":\"10.1080/21645698.2019.1631115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crop improvement through transgenic technologies is commonly tagged with GMO (genetically-modified-organisms) where the presence of transgene becomes a big question for the society and the legislation authorities. However, new plant breeding techniques like CRISPR/Cas9 system [clustered regularly interspaced palindromic repeats (CRISPR)-associated 9] can overcome these limitations through transgene-free products. Potato (<i>Solanum tuberosum</i> L.) being a major food crop has the potential to feed the rising world population. Unfortunately, the cultivated potato suffers considerable production losses due to several pre- and post-harvest stresses such as plant viruses (majorly RNA viruses) and cold-induced sweetening (CIS; the conversion of sucrose to glucose and fructose inside cell vacuole). A number of strategies, ranging from crop breeding to genetic engineering, have been employed so far in potato for trait improvement. Recently, new breeding techniques have been utilized to knock-out potato genes/factors like eukaryotic translation initiation factors [<i>elF4E</i> and isoform <i>elF(iso)4E</i>)], that interact with viruses to assist viral infection, and vacuolar invertase, a core enzyme in CIS. In this context, CRISPR technology is predicted to reduce the cost of potato production and is likely to pass through the regulatory process being marker and transgene-free. The current review summarizes the potential application of the CRISPR/Cas9 system for traits improvement in potato. Moreover, the prospects for engineering resistance against potato fungal pathogens and current limitations/challenges are discussed.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\"11 4\",\"pages\":\"185-205\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21645698.2019.1631115\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2019.1631115\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2019.1631115","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/7/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Prospects for potato genome editing to engineer resistance against viruses and cold-induced sweetening.
Crop improvement through transgenic technologies is commonly tagged with GMO (genetically-modified-organisms) where the presence of transgene becomes a big question for the society and the legislation authorities. However, new plant breeding techniques like CRISPR/Cas9 system [clustered regularly interspaced palindromic repeats (CRISPR)-associated 9] can overcome these limitations through transgene-free products. Potato (Solanum tuberosum L.) being a major food crop has the potential to feed the rising world population. Unfortunately, the cultivated potato suffers considerable production losses due to several pre- and post-harvest stresses such as plant viruses (majorly RNA viruses) and cold-induced sweetening (CIS; the conversion of sucrose to glucose and fructose inside cell vacuole). A number of strategies, ranging from crop breeding to genetic engineering, have been employed so far in potato for trait improvement. Recently, new breeding techniques have been utilized to knock-out potato genes/factors like eukaryotic translation initiation factors [elF4E and isoform elF(iso)4E)], that interact with viruses to assist viral infection, and vacuolar invertase, a core enzyme in CIS. In this context, CRISPR technology is predicted to reduce the cost of potato production and is likely to pass through the regulatory process being marker and transgene-free. The current review summarizes the potential application of the CRISPR/Cas9 system for traits improvement in potato. Moreover, the prospects for engineering resistance against potato fungal pathogens and current limitations/challenges are discussed.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments