从桌面到SWIFT/T的大规模模型探索。

Jonathan Ozik, Nicholson T Collier, Justin M Wozniak, Carmine Spagnuolo
{"title":"从桌面到SWIFT/T的大规模模型探索。","authors":"Jonathan Ozik,&nbsp;Nicholson T Collier,&nbsp;Justin M Wozniak,&nbsp;Carmine Spagnuolo","doi":"10.1109/WSC.2016.7822090","DOIUrl":null,"url":null,"abstract":"<p><p>As high-performance computing resources have become increasingly available, new modes of computational processing and experimentation have become possible. This tutorial presents the Extreme-scale Model Exploration with Swift/T (EMEWS) framework for combining existing capabilities for model exploration approaches (e.g., model calibration, metaheuristics, data assimilation) and simulations (or any \"black box\" application code) with the Swift/T parallel scripting language to run scientific workflows on a variety of computing resources, from desktop to academic clusters to Top 500 level supercomputers. We will present a number of use-cases, starting with a simple agent-based model parameter sweep, and ending with a complex adaptive parameter space exploration workflow coordinating ensembles of distributed simulations. The use-cases are published on a public repository for interested parties to download and run on their own.</p>","PeriodicalId":74535,"journal":{"name":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","volume":"2016 ","pages":"206-220"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/WSC.2016.7822090","citationCount":"60","resultStr":"{\"title\":\"FROM DESKTOP TO LARGE-SCALE MODEL EXPLORATION WITH SWIFT/T.\",\"authors\":\"Jonathan Ozik,&nbsp;Nicholson T Collier,&nbsp;Justin M Wozniak,&nbsp;Carmine Spagnuolo\",\"doi\":\"10.1109/WSC.2016.7822090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As high-performance computing resources have become increasingly available, new modes of computational processing and experimentation have become possible. This tutorial presents the Extreme-scale Model Exploration with Swift/T (EMEWS) framework for combining existing capabilities for model exploration approaches (e.g., model calibration, metaheuristics, data assimilation) and simulations (or any \\\"black box\\\" application code) with the Swift/T parallel scripting language to run scientific workflows on a variety of computing resources, from desktop to academic clusters to Top 500 level supercomputers. We will present a number of use-cases, starting with a simple agent-based model parameter sweep, and ending with a complex adaptive parameter space exploration workflow coordinating ensembles of distributed simulations. The use-cases are published on a public repository for interested parties to download and run on their own.</p>\",\"PeriodicalId\":74535,\"journal\":{\"name\":\"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference\",\"volume\":\"2016 \",\"pages\":\"206-220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/WSC.2016.7822090\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2016.7822090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

随着高性能计算资源的日益可用,新的计算处理和实验模式成为可能。本教程介绍了Swift/T的极限规模模型探索(EMEWS)框架,该框架将模型探索方法(例如,模型校准、元启发式、数据同化)和模拟(或任何“黑匣子”应用程序代码)的现有能力与Swift/T并行脚本语言相结合,以在各种计算资源上运行科学工作流程,从桌面到学术集群再到500强超级计算机。我们将介绍一些用例,从简单的基于代理的模型参数扫描开始,到协调分布式模拟集合的复杂自适应参数空间探索工作流结束。用例发布在公共存储库中,供感兴趣的各方自行下载和运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FROM DESKTOP TO LARGE-SCALE MODEL EXPLORATION WITH SWIFT/T.

FROM DESKTOP TO LARGE-SCALE MODEL EXPLORATION WITH SWIFT/T.

FROM DESKTOP TO LARGE-SCALE MODEL EXPLORATION WITH SWIFT/T.

FROM DESKTOP TO LARGE-SCALE MODEL EXPLORATION WITH SWIFT/T.

As high-performance computing resources have become increasingly available, new modes of computational processing and experimentation have become possible. This tutorial presents the Extreme-scale Model Exploration with Swift/T (EMEWS) framework for combining existing capabilities for model exploration approaches (e.g., model calibration, metaheuristics, data assimilation) and simulations (or any "black box" application code) with the Swift/T parallel scripting language to run scientific workflows on a variety of computing resources, from desktop to academic clusters to Top 500 level supercomputers. We will present a number of use-cases, starting with a simple agent-based model parameter sweep, and ending with a complex adaptive parameter space exploration workflow coordinating ensembles of distributed simulations. The use-cases are published on a public repository for interested parties to download and run on their own.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信