{"title":"在秀丽隐杆线虫的轴突生长过程中,UIG-1/CDC-42鸟嘌呤核苷酸交换因子与CED-10/Rac1并行作用。","authors":"Wei Cao, Shuer Deng, Roger Pocock","doi":"10.1080/21541248.2019.1610302","DOIUrl":null,"url":null,"abstract":"<p><p>During development of the brain, neuronal circuits are formed through the projection of axons and dendrites in response to guidance signals. Rho GTPases (Rac1/RhoA/Cdc42) are major regulators of axo-dendritic outgrowth and guidance due to their role in controlling actin cytoskeletal dynamics, cell adhesion and motility. Functional redundancy of Rho GTPase-regulated pathways in neuronal development can mask the roles of specific GTPases. To examine potential Rho GTPase redundancy, we utilized a recently isolated hypomorphic mutation in a <i>Caenorhabditis elegans</i> Rac1 protein - CED-10(G30E) - which reduces the GTP binding and inhibits axon outgrowth of the PVQ interneurons. Here, we show that the CDC-42-specific guanine nucleotide exchange factor UIG-1 acts in parallel to CED-10/Rac1 to control PVQ axon outgrowth. UIG-1 performs this function in a cell-autonomous manner. Further, we found that transgenic expression of CDC-42 can compensate for aberrant CED-10(G30E)-regulated signalling during PVQ axon outgrowth. Together, our study reveals a previously unappreciated function for CDC-42 in PVQ axon outgrowth in <i>C. elegans</i>.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":"12 1","pages":"60-66"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781583/pdf/KSGT_12_1610302.pdf","citationCount":"0","resultStr":"{\"title\":\"The UIG-1/CDC-42 guanine nucleotide exchange factor acts in parallel to CED-10/Rac1 during axon outgrowth in <i>Caenorhabditis elegans</i>.\",\"authors\":\"Wei Cao, Shuer Deng, Roger Pocock\",\"doi\":\"10.1080/21541248.2019.1610302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During development of the brain, neuronal circuits are formed through the projection of axons and dendrites in response to guidance signals. Rho GTPases (Rac1/RhoA/Cdc42) are major regulators of axo-dendritic outgrowth and guidance due to their role in controlling actin cytoskeletal dynamics, cell adhesion and motility. Functional redundancy of Rho GTPase-regulated pathways in neuronal development can mask the roles of specific GTPases. To examine potential Rho GTPase redundancy, we utilized a recently isolated hypomorphic mutation in a <i>Caenorhabditis elegans</i> Rac1 protein - CED-10(G30E) - which reduces the GTP binding and inhibits axon outgrowth of the PVQ interneurons. Here, we show that the CDC-42-specific guanine nucleotide exchange factor UIG-1 acts in parallel to CED-10/Rac1 to control PVQ axon outgrowth. UIG-1 performs this function in a cell-autonomous manner. Further, we found that transgenic expression of CDC-42 can compensate for aberrant CED-10(G30E)-regulated signalling during PVQ axon outgrowth. Together, our study reveals a previously unappreciated function for CDC-42 in PVQ axon outgrowth in <i>C. elegans</i>.</p>\",\"PeriodicalId\":22139,\"journal\":{\"name\":\"Small GTPases\",\"volume\":\"12 1\",\"pages\":\"60-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781583/pdf/KSGT_12_1610302.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small GTPases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21541248.2019.1610302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2019.1610302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The UIG-1/CDC-42 guanine nucleotide exchange factor acts in parallel to CED-10/Rac1 during axon outgrowth in Caenorhabditis elegans.
During development of the brain, neuronal circuits are formed through the projection of axons and dendrites in response to guidance signals. Rho GTPases (Rac1/RhoA/Cdc42) are major regulators of axo-dendritic outgrowth and guidance due to their role in controlling actin cytoskeletal dynamics, cell adhesion and motility. Functional redundancy of Rho GTPase-regulated pathways in neuronal development can mask the roles of specific GTPases. To examine potential Rho GTPase redundancy, we utilized a recently isolated hypomorphic mutation in a Caenorhabditis elegans Rac1 protein - CED-10(G30E) - which reduces the GTP binding and inhibits axon outgrowth of the PVQ interneurons. Here, we show that the CDC-42-specific guanine nucleotide exchange factor UIG-1 acts in parallel to CED-10/Rac1 to control PVQ axon outgrowth. UIG-1 performs this function in a cell-autonomous manner. Further, we found that transgenic expression of CDC-42 can compensate for aberrant CED-10(G30E)-regulated signalling during PVQ axon outgrowth. Together, our study reveals a previously unappreciated function for CDC-42 in PVQ axon outgrowth in C. elegans.