{"title":"在情绪处理任务中,性激素对睡眠不足的脆弱性起着重要作用","authors":"K.A. Lustig, E.M. Stoakley, K.J. MacDonald, S.N. Geniole, C.M. McCormick, K.A. Cote","doi":"10.1016/j.nbscr.2017.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>The central aim of this study was to investigate hormones as a predictor of individual vulnerability or resiliency on emotion processing tasks following one night of sleep restriction. The restriction group was instructed to sleep 3<!--> <!-->a.m.–7<!--> <!-->a.m. (13 men, 13 women in follicular phase, 10 women in luteal phase of menstrual cycle), and a control group slept 11<!--> <!-->p.m.–7<!--> <!-->a.m. (12 men, 12 follicular women, 12 luteal women). Sleep from home was verified with actigraphy. Saliva samples were collected on the evening prior to restriction, and in the morning and afternoon following restriction, to measure testosterone, estradiol, and progesterone. In the laboratory, event-related potentials (ERPs) were recorded during presentation of images and faces to index neural processing of emotional stimuli. Compared to controls, sleep-restricted participants had a larger amplitude Late Positive Potential (LPP) ERP to positive vs neutral images, reflecting greater motivated attention towards positive stimuli. Sleep-restricted participants were also less accurate categorizing sad faces and exhibited a larger N170 to sad faces, reflecting greater neural reactivity. Sleep-restricted luteal women were less accurate categorizing all images compared to control luteal women, and progesterone was related to several outcomes. Morning testosterone in men was lower in the sleep-restricted group compared to controls; lower testosterone was associated with lower accuracy to positive images, a greater difference between positive vs neutral LPP amplitude, and lower accuracy to sad and fearful faces. In summary, women higher in progesterone and men lower in testosterone were more vulnerable to the effects of sleep restriction on emotion processing tasks. This study highlights a role for sex and sex hormones in understanding individual differences in vulnerability to sleep loss.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"5 ","pages":"Pages 94-104"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2017.10.001","citationCount":"12","resultStr":"{\"title\":\"Sex hormones play a role in vulnerability to sleep loss on emotion processing tasks\",\"authors\":\"K.A. Lustig, E.M. Stoakley, K.J. MacDonald, S.N. Geniole, C.M. McCormick, K.A. Cote\",\"doi\":\"10.1016/j.nbscr.2017.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The central aim of this study was to investigate hormones as a predictor of individual vulnerability or resiliency on emotion processing tasks following one night of sleep restriction. The restriction group was instructed to sleep 3<!--> <!-->a.m.–7<!--> <!-->a.m. (13 men, 13 women in follicular phase, 10 women in luteal phase of menstrual cycle), and a control group slept 11<!--> <!-->p.m.–7<!--> <!-->a.m. (12 men, 12 follicular women, 12 luteal women). Sleep from home was verified with actigraphy. Saliva samples were collected on the evening prior to restriction, and in the morning and afternoon following restriction, to measure testosterone, estradiol, and progesterone. In the laboratory, event-related potentials (ERPs) were recorded during presentation of images and faces to index neural processing of emotional stimuli. Compared to controls, sleep-restricted participants had a larger amplitude Late Positive Potential (LPP) ERP to positive vs neutral images, reflecting greater motivated attention towards positive stimuli. Sleep-restricted participants were also less accurate categorizing sad faces and exhibited a larger N170 to sad faces, reflecting greater neural reactivity. Sleep-restricted luteal women were less accurate categorizing all images compared to control luteal women, and progesterone was related to several outcomes. Morning testosterone in men was lower in the sleep-restricted group compared to controls; lower testosterone was associated with lower accuracy to positive images, a greater difference between positive vs neutral LPP amplitude, and lower accuracy to sad and fearful faces. In summary, women higher in progesterone and men lower in testosterone were more vulnerable to the effects of sleep restriction on emotion processing tasks. This study highlights a role for sex and sex hormones in understanding individual differences in vulnerability to sleep loss.</p></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"5 \",\"pages\":\"Pages 94-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nbscr.2017.10.001\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994417300160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994417300160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Sex hormones play a role in vulnerability to sleep loss on emotion processing tasks
The central aim of this study was to investigate hormones as a predictor of individual vulnerability or resiliency on emotion processing tasks following one night of sleep restriction. The restriction group was instructed to sleep 3 a.m.–7 a.m. (13 men, 13 women in follicular phase, 10 women in luteal phase of menstrual cycle), and a control group slept 11 p.m.–7 a.m. (12 men, 12 follicular women, 12 luteal women). Sleep from home was verified with actigraphy. Saliva samples were collected on the evening prior to restriction, and in the morning and afternoon following restriction, to measure testosterone, estradiol, and progesterone. In the laboratory, event-related potentials (ERPs) were recorded during presentation of images and faces to index neural processing of emotional stimuli. Compared to controls, sleep-restricted participants had a larger amplitude Late Positive Potential (LPP) ERP to positive vs neutral images, reflecting greater motivated attention towards positive stimuli. Sleep-restricted participants were also less accurate categorizing sad faces and exhibited a larger N170 to sad faces, reflecting greater neural reactivity. Sleep-restricted luteal women were less accurate categorizing all images compared to control luteal women, and progesterone was related to several outcomes. Morning testosterone in men was lower in the sleep-restricted group compared to controls; lower testosterone was associated with lower accuracy to positive images, a greater difference between positive vs neutral LPP amplitude, and lower accuracy to sad and fearful faces. In summary, women higher in progesterone and men lower in testosterone were more vulnerable to the effects of sleep restriction on emotion processing tasks. This study highlights a role for sex and sex hormones in understanding individual differences in vulnerability to sleep loss.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.