Gang Xu , Jon Dean , Tiecheng Liu , Fangyun Tian , Jimo Borjigin
{"title":"在大鼠体内,慢性昼夜节律提前变化会使褪黑激素分泌中断数天","authors":"Gang Xu , Jon Dean , Tiecheng Liu , Fangyun Tian , Jimo Borjigin","doi":"10.1016/j.nbscr.2018.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Melatonin deficiency has been proposed to underlie higher risks for cardiovascular and several other diseases in humans experiencing prolonged shiftwork. However, melatonin secretion has not been monitored longitudinally during consecutive shifts of the light:dark (LD) cycles in the same individuals (animals or humans) and the extent of melatonin deficiency is unknown in individuals experiencing consecutive LD shifts. We investigated the effect of consecutive LD shifts on melatonin secretion in adult F344 rats using continuous online pineal-microdialysis. The rats were entrained to the 12 h:12 h LD cycle before the shifts. The LD cycle was then advanced (n=5) or delayed (n=4) for six hours every four days for four consecutive times. The rats exhibited marked asymmetry in response to delay or advance LD shifts. While rats exposed to the repeated LD delay shifts always exhibited melatonin secretion throughout the entire periods, repeated LD advance shifts suppressed nocturnal melatonin secretion for several consecutive days in the middle of the 3-week period. Moreover, melatonin offset after LD delay and melatonin onset after LD advance determined the rate of circadian pacemaker reentrainment. Additionally, melatonin offset was phase locked at the new dark/light junctions for days following LD advance. These data demonstrate that chronic LD shifts are deleterious to melatonin rhythms, and that this effect is much more pronounced during advance shifts. These data may enhance our understanding of impact of LD shifts on our circadian timing system and benefit better design of shiftwork schedules to avoid melatonin disruption.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"5 ","pages":"Pages 78-83"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2018.02.002","citationCount":"3","resultStr":"{\"title\":\"Chronic circadian advance shifts abolish melatonin secretion for days in rats\",\"authors\":\"Gang Xu , Jon Dean , Tiecheng Liu , Fangyun Tian , Jimo Borjigin\",\"doi\":\"10.1016/j.nbscr.2018.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Melatonin deficiency has been proposed to underlie higher risks for cardiovascular and several other diseases in humans experiencing prolonged shiftwork. However, melatonin secretion has not been monitored longitudinally during consecutive shifts of the light:dark (LD) cycles in the same individuals (animals or humans) and the extent of melatonin deficiency is unknown in individuals experiencing consecutive LD shifts. We investigated the effect of consecutive LD shifts on melatonin secretion in adult F344 rats using continuous online pineal-microdialysis. The rats were entrained to the 12 h:12 h LD cycle before the shifts. The LD cycle was then advanced (n=5) or delayed (n=4) for six hours every four days for four consecutive times. The rats exhibited marked asymmetry in response to delay or advance LD shifts. While rats exposed to the repeated LD delay shifts always exhibited melatonin secretion throughout the entire periods, repeated LD advance shifts suppressed nocturnal melatonin secretion for several consecutive days in the middle of the 3-week period. Moreover, melatonin offset after LD delay and melatonin onset after LD advance determined the rate of circadian pacemaker reentrainment. Additionally, melatonin offset was phase locked at the new dark/light junctions for days following LD advance. These data demonstrate that chronic LD shifts are deleterious to melatonin rhythms, and that this effect is much more pronounced during advance shifts. These data may enhance our understanding of impact of LD shifts on our circadian timing system and benefit better design of shiftwork schedules to avoid melatonin disruption.</p></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"5 \",\"pages\":\"Pages 78-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nbscr.2018.02.002\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994417300354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994417300354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3
摘要
褪黑激素缺乏被认为是长时间轮班工作的人患心血管疾病和其他几种疾病的高风险的基础。然而,在同一个体(动物或人类)中,在连续的光:暗(LD)周期变化期间,褪黑激素的分泌没有被纵向监测,并且在经历连续的LD变化的个体中褪黑激素缺乏的程度是未知的。我们通过连续在线松果体微透析研究了连续LD移位对成年F344大鼠褪黑素分泌的影响。在轮班前,将大鼠送入12 h:12 h LD循环。然后将LD周期提前(n=5)或延迟(n=4),每四天6小时,连续四次。大鼠对延迟或提前LD移位的反应表现出明显的不对称性。重复LD延迟移位的大鼠在整个周期内都表现出褪黑激素分泌,而重复LD提前移位在3周的中间连续几天抑制夜间褪黑激素分泌。此外,LD延迟后褪黑素的抵消和LD提前后褪黑素的发作决定了昼夜节律起搏器再携带的速率。此外,褪黑素抵消在LD推进后的几天内在新的暗/光交界处被相位锁定。这些数据表明,慢性LD移位对褪黑素节律有害,并且这种影响在提前移位期间更为明显。这些数据可以增强我们对LD轮班对昼夜节律系统的影响的理解,并有助于更好地设计轮班时间表以避免褪黑素中断。
Chronic circadian advance shifts abolish melatonin secretion for days in rats
Melatonin deficiency has been proposed to underlie higher risks for cardiovascular and several other diseases in humans experiencing prolonged shiftwork. However, melatonin secretion has not been monitored longitudinally during consecutive shifts of the light:dark (LD) cycles in the same individuals (animals or humans) and the extent of melatonin deficiency is unknown in individuals experiencing consecutive LD shifts. We investigated the effect of consecutive LD shifts on melatonin secretion in adult F344 rats using continuous online pineal-microdialysis. The rats were entrained to the 12 h:12 h LD cycle before the shifts. The LD cycle was then advanced (n=5) or delayed (n=4) for six hours every four days for four consecutive times. The rats exhibited marked asymmetry in response to delay or advance LD shifts. While rats exposed to the repeated LD delay shifts always exhibited melatonin secretion throughout the entire periods, repeated LD advance shifts suppressed nocturnal melatonin secretion for several consecutive days in the middle of the 3-week period. Moreover, melatonin offset after LD delay and melatonin onset after LD advance determined the rate of circadian pacemaker reentrainment. Additionally, melatonin offset was phase locked at the new dark/light junctions for days following LD advance. These data demonstrate that chronic LD shifts are deleterious to melatonin rhythms, and that this effect is much more pronounced during advance shifts. These data may enhance our understanding of impact of LD shifts on our circadian timing system and benefit better design of shiftwork schedules to avoid melatonin disruption.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.