难度可调整和可扩展的受限多目标测试问题工具包

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhun Fan;Wenji Li;Xinye Cai;Hui Li;Caimin Wei;Qingfu Zhang;Kalyanmoy Deb;Erik Goodman
{"title":"难度可调整和可扩展的受限多目标测试问题工具包","authors":"Zhun Fan;Wenji Li;Xinye Cai;Hui Li;Caimin Wei;Qingfu Zhang;Kalyanmoy Deb;Erik Goodman","doi":"10.1162/evco_a_00259","DOIUrl":null,"url":null,"abstract":"<para>Multiobjective evolutionary algorithms (MOEAs) have progressed significantly in recent decades, but most of them are designed to solve unconstrained multiobjective optimization problems. In fact, many real-world multiobjective problems contain a number of constraints. To promote research on constrained multiobjective optimization, we first propose a problem classification scheme with three primary types of difficulty, which reflect various types of challenges presented by real-world optimization problems, in order to characterize the constraint functions in constrained multiobjective optimization problems (CMOPs). These are feasibility-hardness, convergence-hardness, and diversity-hardness. We then develop a general toolkit to construct difficulty adjustable and scalable CMOPs (DAS-CMOPs, or DAS-CMaOPs when the number of objectives is greater than three) with three types of parameterized constraint functions developed to capture the three proposed types of difficulty. In fact, the combination of the three primary constraint functions with different parameters allows the construction of a large variety of CMOPs, with difficulty that can be defined by a triplet, with each of its parameters specifying the level of one of the types of primary difficulty. Furthermore, the number of objectives in this toolkit can be scaled beyond three. Based on this toolkit, we suggest nine difficulty adjustable and scalable CMOPs and nine CMaOPs, to be called DAS-CMOP1-9 and DAS-CMaOP1-9, respectively. To evaluate the proposed test problems, two popular CMOEAs—MOEA/D-CDP (MOEA/D with constraint dominance principle) and NSGA-II-CDP (NSGA-II with constraint dominance principle) and two popular constrained many-objective evolutionary algorithms (CMaOEAs)—C-MOEA/DD and C-NSGA-III—are used to compare performance on DAS-CMOP1-9 and DAS-CMaOP1-9 with a variety of difficulty triplets, respectively. The experimental results reveal that mechanisms in MOEA/D-CDP may be more effective in solving convergence-hard DAS-CMOPs, while mechanisms of NSGA-II-CDP may be more effective in solving DAS-CMOPs with simultaneous diversity-, feasibility-, and convergence-hardness. Mechanisms in C-NSGA-III may be more effective in solving feasibility-hard CMaOPs, while mechanisms of C-MOEA/DD may be more effective in solving CMaOPs with convergence-hardness. In addition, none of them can solve these problems efficiently, which stimulates us to continue to develop new CMOEAs and CMaOEAs to solve the suggested DAS-CMOPs and DAS-CMaOPs.</para>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"28 3","pages":"339-378"},"PeriodicalIF":4.6000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/evco_a_00259","citationCount":"90","resultStr":"{\"title\":\"Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit\",\"authors\":\"Zhun Fan;Wenji Li;Xinye Cai;Hui Li;Caimin Wei;Qingfu Zhang;Kalyanmoy Deb;Erik Goodman\",\"doi\":\"10.1162/evco_a_00259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<para>Multiobjective evolutionary algorithms (MOEAs) have progressed significantly in recent decades, but most of them are designed to solve unconstrained multiobjective optimization problems. In fact, many real-world multiobjective problems contain a number of constraints. To promote research on constrained multiobjective optimization, we first propose a problem classification scheme with three primary types of difficulty, which reflect various types of challenges presented by real-world optimization problems, in order to characterize the constraint functions in constrained multiobjective optimization problems (CMOPs). These are feasibility-hardness, convergence-hardness, and diversity-hardness. We then develop a general toolkit to construct difficulty adjustable and scalable CMOPs (DAS-CMOPs, or DAS-CMaOPs when the number of objectives is greater than three) with three types of parameterized constraint functions developed to capture the three proposed types of difficulty. In fact, the combination of the three primary constraint functions with different parameters allows the construction of a large variety of CMOPs, with difficulty that can be defined by a triplet, with each of its parameters specifying the level of one of the types of primary difficulty. Furthermore, the number of objectives in this toolkit can be scaled beyond three. Based on this toolkit, we suggest nine difficulty adjustable and scalable CMOPs and nine CMaOPs, to be called DAS-CMOP1-9 and DAS-CMaOP1-9, respectively. To evaluate the proposed test problems, two popular CMOEAs—MOEA/D-CDP (MOEA/D with constraint dominance principle) and NSGA-II-CDP (NSGA-II with constraint dominance principle) and two popular constrained many-objective evolutionary algorithms (CMaOEAs)—C-MOEA/DD and C-NSGA-III—are used to compare performance on DAS-CMOP1-9 and DAS-CMaOP1-9 with a variety of difficulty triplets, respectively. The experimental results reveal that mechanisms in MOEA/D-CDP may be more effective in solving convergence-hard DAS-CMOPs, while mechanisms of NSGA-II-CDP may be more effective in solving DAS-CMOPs with simultaneous diversity-, feasibility-, and convergence-hardness. Mechanisms in C-NSGA-III may be more effective in solving feasibility-hard CMaOPs, while mechanisms of C-MOEA/DD may be more effective in solving CMaOPs with convergence-hardness. In addition, none of them can solve these problems efficiently, which stimulates us to continue to develop new CMOEAs and CMaOEAs to solve the suggested DAS-CMOPs and DAS-CMaOPs.</para>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\"28 3\",\"pages\":\"339-378\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1162/evco_a_00259\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9185170/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9185170/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 90

摘要

多目标进化算法(MOEAs)在近几十年来取得了显著的进展,但它们大多是为解决无约束多目标优化问题而设计的。事实上,许多现实世界中的多目标问题都包含许多约束条件。为了促进约束多目标优化的研究,我们首先提出了一种具有三种主要困难类型的问题分类方案,反映了现实世界优化问题所面临的各种类型的挑战,以刻画约束多目标最优化问题中的约束函数。这些是可行性硬度、收敛性硬度和多样性硬度。然后,我们开发了一个通用工具包,用三种类型的参数化约束函数来构建难度可调和可扩展的CMOP(当目标数量大于三时,DAS CMOP或DAS CMaOP),以捕获三种提出的难度类型。事实上,具有不同参数的三个主要约束函数的组合允许构造各种各样的CMOP,其难度可以由三元组来定义,其每个参数指定主要难度类型之一的级别。此外,该工具包中的目标数量可以扩大到三个以上。基于该工具包,我们提出了九个难度可调和可扩展的CMOP和九个CMaOP,分别称为DAS-CMOP1-9和DAS-CMaOP1-9。为了评估所提出的测试问题,使用了两种流行的CMOEA——MOEA/D-CDP(具有约束优势原理的MOEA/D)和NSGA-II-CDP(带有约束优势原则的NSGA-II),以及两种常用的约束多目标进化算法(CMaOEA)——C-MOEA/DD和C-NSGA-III——来比较在具有各种难度三元组的DAS-CMOP1-9和DAS-CMaOP1-9上的性能,分别地实验结果表明,MOEA/D-CDP中的机制在解决收敛困难的DAS CMOP方面可能更有效,而NSGA-II-CDP机制可能在解决同时具有多样性、可行性和收敛困难的DAS-CMOP方面更有效。C-NSGA-III中的机制在解决可行性困难的CMAOP方面可能更有效,而C-MOEA/DD机制在解决具有收敛硬度的CMAOP时可能更有效。此外,它们都不能有效地解决这些问题,这激励我们继续开发新的CMOEA和CMaOEA,以解决建议的DAS CMOP和DAS CMaOP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit
Multiobjective evolutionary algorithms (MOEAs) have progressed significantly in recent decades, but most of them are designed to solve unconstrained multiobjective optimization problems. In fact, many real-world multiobjective problems contain a number of constraints. To promote research on constrained multiobjective optimization, we first propose a problem classification scheme with three primary types of difficulty, which reflect various types of challenges presented by real-world optimization problems, in order to characterize the constraint functions in constrained multiobjective optimization problems (CMOPs). These are feasibility-hardness, convergence-hardness, and diversity-hardness. We then develop a general toolkit to construct difficulty adjustable and scalable CMOPs (DAS-CMOPs, or DAS-CMaOPs when the number of objectives is greater than three) with three types of parameterized constraint functions developed to capture the three proposed types of difficulty. In fact, the combination of the three primary constraint functions with different parameters allows the construction of a large variety of CMOPs, with difficulty that can be defined by a triplet, with each of its parameters specifying the level of one of the types of primary difficulty. Furthermore, the number of objectives in this toolkit can be scaled beyond three. Based on this toolkit, we suggest nine difficulty adjustable and scalable CMOPs and nine CMaOPs, to be called DAS-CMOP1-9 and DAS-CMaOP1-9, respectively. To evaluate the proposed test problems, two popular CMOEAs—MOEA/D-CDP (MOEA/D with constraint dominance principle) and NSGA-II-CDP (NSGA-II with constraint dominance principle) and two popular constrained many-objective evolutionary algorithms (CMaOEAs)—C-MOEA/DD and C-NSGA-III—are used to compare performance on DAS-CMOP1-9 and DAS-CMaOP1-9 with a variety of difficulty triplets, respectively. The experimental results reveal that mechanisms in MOEA/D-CDP may be more effective in solving convergence-hard DAS-CMOPs, while mechanisms of NSGA-II-CDP may be more effective in solving DAS-CMOPs with simultaneous diversity-, feasibility-, and convergence-hardness. Mechanisms in C-NSGA-III may be more effective in solving feasibility-hard CMaOPs, while mechanisms of C-MOEA/DD may be more effective in solving CMaOPs with convergence-hardness. In addition, none of them can solve these problems efficiently, which stimulates us to continue to develop new CMOEAs and CMaOEAs to solve the suggested DAS-CMOPs and DAS-CMaOPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信