{"title":"葡萄糖酸镁对高脂饮食大鼠脂质代谢、抗氧化状态及相关基因表达的影响","authors":"Qian Zhang, Peng-Hui Zhou, Xiao-Li Zhou, Da-Long Zhang, Qing Gu, Shu-Jing Zhang, Jing Zhang, Jing-Shu Zhang, Zhi-Yong Qian","doi":"10.1684/mrh.2019.0445","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the effect of magnesium gluconate (MgG) on lipid metabolism and its regulation mechanism through animal experiments, and to provide basis for MgG dietary intervention in hyperlipidemia. The first four weeks was hyperlipidemia-inducing period through high-fat diet and the following eight weeks was the MgG supplementation. At the end of the experiment, blood and liver samples were collected for the measurements of lipid profile, antioxidative indexes, pathological examination, and cholesterol metabolism-related gene expression. Oral administration of MgG notably decreased the blood levels of TC, TG, LDL-C and liver function index ALT and AST of hyperlipidemic rats. The rats supplemented with magnesium showed a huge increase in the GSH-Px and SOD activities, and reduced the heart weight and liver lipid accumulation of high-fat diet fed rats. MgG remarkably up-regulated the mRNA expression levels of LDLR and CYP7A1 of liver enzymes related to cholesterol metabolism. Oral magnesium supplementation inhibited an increase in lipid profile and liver function index by a high-fat diet, and enhanced the activity of the antioxidant enzymes. Magnesium has lipid-lowering and antioxidative effects that protect the liver against hyperlipidemia.</p>","PeriodicalId":18159,"journal":{"name":"Magnesium research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of magnesium gluconate administration on lipid metabolism, antioxidative status, and related gene expression in rats fed a high-fat diet.\",\"authors\":\"Qian Zhang, Peng-Hui Zhou, Xiao-Li Zhou, Da-Long Zhang, Qing Gu, Shu-Jing Zhang, Jing Zhang, Jing-Shu Zhang, Zhi-Yong Qian\",\"doi\":\"10.1684/mrh.2019.0445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore the effect of magnesium gluconate (MgG) on lipid metabolism and its regulation mechanism through animal experiments, and to provide basis for MgG dietary intervention in hyperlipidemia. The first four weeks was hyperlipidemia-inducing period through high-fat diet and the following eight weeks was the MgG supplementation. At the end of the experiment, blood and liver samples were collected for the measurements of lipid profile, antioxidative indexes, pathological examination, and cholesterol metabolism-related gene expression. Oral administration of MgG notably decreased the blood levels of TC, TG, LDL-C and liver function index ALT and AST of hyperlipidemic rats. The rats supplemented with magnesium showed a huge increase in the GSH-Px and SOD activities, and reduced the heart weight and liver lipid accumulation of high-fat diet fed rats. MgG remarkably up-regulated the mRNA expression levels of LDLR and CYP7A1 of liver enzymes related to cholesterol metabolism. Oral magnesium supplementation inhibited an increase in lipid profile and liver function index by a high-fat diet, and enhanced the activity of the antioxidant enzymes. Magnesium has lipid-lowering and antioxidative effects that protect the liver against hyperlipidemia.</p>\",\"PeriodicalId\":18159,\"journal\":{\"name\":\"Magnesium research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnesium research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/mrh.2019.0445\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnesium research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/mrh.2019.0445","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of magnesium gluconate administration on lipid metabolism, antioxidative status, and related gene expression in rats fed a high-fat diet.
To explore the effect of magnesium gluconate (MgG) on lipid metabolism and its regulation mechanism through animal experiments, and to provide basis for MgG dietary intervention in hyperlipidemia. The first four weeks was hyperlipidemia-inducing period through high-fat diet and the following eight weeks was the MgG supplementation. At the end of the experiment, blood and liver samples were collected for the measurements of lipid profile, antioxidative indexes, pathological examination, and cholesterol metabolism-related gene expression. Oral administration of MgG notably decreased the blood levels of TC, TG, LDL-C and liver function index ALT and AST of hyperlipidemic rats. The rats supplemented with magnesium showed a huge increase in the GSH-Px and SOD activities, and reduced the heart weight and liver lipid accumulation of high-fat diet fed rats. MgG remarkably up-regulated the mRNA expression levels of LDLR and CYP7A1 of liver enzymes related to cholesterol metabolism. Oral magnesium supplementation inhibited an increase in lipid profile and liver function index by a high-fat diet, and enhanced the activity of the antioxidant enzymes. Magnesium has lipid-lowering and antioxidative effects that protect the liver against hyperlipidemia.
期刊介绍:
Magnesium Research, the official journal of the international Society for the Development of Research on Magnesium (SDRM), has been the benchmark journal on the use of magnesium in biomedicine for more than 30 years.
This quarterly publication provides regular updates on multinational and multidisciplinary research into magnesium, bringing together original experimental and clinical articles, correspondence, Letters to the Editor, comments on latest news, general features, summaries of relevant articles from other journals, and reports and statements from national and international conferences and symposiums.
Indexed in the leading medical databases, Magnesium Research is an essential journal for specialists and general practitioners, for basic and clinical researchers, for practising doctors and academics.