Dörte Falke, Marco Fischer, Bianca Biefel, Christian Ihling, Claudia Hammerschmidt, Kevin Reinefeld, Alexander Haase, Andrea Sinz, R Gary Sawers
{"title":"彩色链霉菌A3有氧呼吸链中的细胞色素bcc-aa3氧化酶超复合体(2)。","authors":"Dörte Falke, Marco Fischer, Bianca Biefel, Christian Ihling, Claudia Hammerschmidt, Kevin Reinefeld, Alexander Haase, Andrea Sinz, R Gary Sawers","doi":"10.1159/000496390","DOIUrl":null,"url":null,"abstract":"<p><p>Streptomyces coelicolor A3(2), an obligately aerobic, oxidase-positive, and filamentous soil bacterium, lacks a soluble cytochrome c in its respiratory chain, having instead a membrane-associated diheme c-type cytochrome, QcrC. This necessitates complex formation to allow electron transfer between the cytochrome bcc and aa3 oxidase respiratory complexes. Combining genetic complementation studies with in-gel cytochrome oxidase activity staining, we demonstrate that the complete qcrCAB-ctaCDFE gene locus on the chromosome, encoding, respectively, the bcc and aa3 complexes, is required to manifest a cytochrome oxidase enzyme activity in both spores and mycelium of a qcr-cta deletion mutant. Blue-native-PAGE identified a cytochrome aa3 oxidase complex of approximately 270 kDa, which catalyzed oxygen-dependent diaminobenzidine oxidation without the requirement for exogenously supplied cytochrome c, indicating association with QcrC. Furthermore, higher molecular mass complexes were identified upon addition of soluble cytochrome c, suggesting the supercomplex is unstable and readily dissociates into subcomplexes lacking QcrC. Immunological and mass spectrometric analyses of active, high-molecular mass oxidase-containing complexes separated by clear-native PAGE identified key subunits of both the bcc complex and the aa3 oxidase, supporting supercomplex formation. Our data also indicate that the cytochrome b QcrB of the bcc complex is less abundant in spores compared with mycelium.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000496390","citationCount":"7","resultStr":"{\"title\":\"Cytochrome bcc-aa3 Oxidase Supercomplexes in the Aerobic Respiratory Chain of Streptomyces coelicolor A3(2).\",\"authors\":\"Dörte Falke, Marco Fischer, Bianca Biefel, Christian Ihling, Claudia Hammerschmidt, Kevin Reinefeld, Alexander Haase, Andrea Sinz, R Gary Sawers\",\"doi\":\"10.1159/000496390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Streptomyces coelicolor A3(2), an obligately aerobic, oxidase-positive, and filamentous soil bacterium, lacks a soluble cytochrome c in its respiratory chain, having instead a membrane-associated diheme c-type cytochrome, QcrC. This necessitates complex formation to allow electron transfer between the cytochrome bcc and aa3 oxidase respiratory complexes. Combining genetic complementation studies with in-gel cytochrome oxidase activity staining, we demonstrate that the complete qcrCAB-ctaCDFE gene locus on the chromosome, encoding, respectively, the bcc and aa3 complexes, is required to manifest a cytochrome oxidase enzyme activity in both spores and mycelium of a qcr-cta deletion mutant. Blue-native-PAGE identified a cytochrome aa3 oxidase complex of approximately 270 kDa, which catalyzed oxygen-dependent diaminobenzidine oxidation without the requirement for exogenously supplied cytochrome c, indicating association with QcrC. Furthermore, higher molecular mass complexes were identified upon addition of soluble cytochrome c, suggesting the supercomplex is unstable and readily dissociates into subcomplexes lacking QcrC. Immunological and mass spectrometric analyses of active, high-molecular mass oxidase-containing complexes separated by clear-native PAGE identified key subunits of both the bcc complex and the aa3 oxidase, supporting supercomplex formation. Our data also indicate that the cytochrome b QcrB of the bcc complex is less abundant in spores compared with mycelium.</p>\",\"PeriodicalId\":16370,\"journal\":{\"name\":\"Journal of Molecular Microbiology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000496390\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000496390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000496390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Cytochrome bcc-aa3 Oxidase Supercomplexes in the Aerobic Respiratory Chain of Streptomyces coelicolor A3(2).
Streptomyces coelicolor A3(2), an obligately aerobic, oxidase-positive, and filamentous soil bacterium, lacks a soluble cytochrome c in its respiratory chain, having instead a membrane-associated diheme c-type cytochrome, QcrC. This necessitates complex formation to allow electron transfer between the cytochrome bcc and aa3 oxidase respiratory complexes. Combining genetic complementation studies with in-gel cytochrome oxidase activity staining, we demonstrate that the complete qcrCAB-ctaCDFE gene locus on the chromosome, encoding, respectively, the bcc and aa3 complexes, is required to manifest a cytochrome oxidase enzyme activity in both spores and mycelium of a qcr-cta deletion mutant. Blue-native-PAGE identified a cytochrome aa3 oxidase complex of approximately 270 kDa, which catalyzed oxygen-dependent diaminobenzidine oxidation without the requirement for exogenously supplied cytochrome c, indicating association with QcrC. Furthermore, higher molecular mass complexes were identified upon addition of soluble cytochrome c, suggesting the supercomplex is unstable and readily dissociates into subcomplexes lacking QcrC. Immunological and mass spectrometric analyses of active, high-molecular mass oxidase-containing complexes separated by clear-native PAGE identified key subunits of both the bcc complex and the aa3 oxidase, supporting supercomplex formation. Our data also indicate that the cytochrome b QcrB of the bcc complex is less abundant in spores compared with mycelium.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.