{"title":"产苦参脂酵母菌KP324968对高浓度柴油烃类的快速生物降解","authors":"Faezeh Babaei, Alireza Habibi","doi":"10.1159/000496797","DOIUrl":null,"url":null,"abstract":"<p><p>In the last decades, biodegradation as an environmentally friendly approach has raised interest in connection with the removal of hydrocarbon pollutants. Its capacity for removing pollutants strongly depends on the type of living cell and environmental conditions. The degradative activity of a new sophorolipid-producing yeast, Candida catenulata KP324968, in the removal of high concentrations of diesel from effluents was statistically evaluated considering the initial pH, the agitation speed, and the initial diesel concentration. The optimal setting of the operational variables at an initial pH of 4.7, an agitation speed of 204 rpm, and an initial diesel concentration of 93.4 g L-1 resulted in the highest total petroleum hydrocarbon removal efficiency: about 82.1% after 6 days (biodegradation rate: 0.378 g gcell-1 h-1). During the cell growth phase, the emulsification index in the medium increased and reached its highest level at 64.6% after 48 h. Further tests indicated that the emulsification capacity was obtained by in situ production of two sophorolipid molecules with an m/z of 533 and 583. In summary, its effective diesel removal and high emulsification capacity makes C. catenulata KP324968 an attractive candidate yeast for the degradation of hydrocarbons from aqueous environments.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":"28 5","pages":"240-254"},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000496797","citationCount":"10","resultStr":"{\"title\":\"Fast Biodegradation of Diesel Hydrocarbons at High Concentration by the Sophorolipid-Producing Yeast Candida catenulata KP324968.\",\"authors\":\"Faezeh Babaei, Alireza Habibi\",\"doi\":\"10.1159/000496797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the last decades, biodegradation as an environmentally friendly approach has raised interest in connection with the removal of hydrocarbon pollutants. Its capacity for removing pollutants strongly depends on the type of living cell and environmental conditions. The degradative activity of a new sophorolipid-producing yeast, Candida catenulata KP324968, in the removal of high concentrations of diesel from effluents was statistically evaluated considering the initial pH, the agitation speed, and the initial diesel concentration. The optimal setting of the operational variables at an initial pH of 4.7, an agitation speed of 204 rpm, and an initial diesel concentration of 93.4 g L-1 resulted in the highest total petroleum hydrocarbon removal efficiency: about 82.1% after 6 days (biodegradation rate: 0.378 g gcell-1 h-1). During the cell growth phase, the emulsification index in the medium increased and reached its highest level at 64.6% after 48 h. Further tests indicated that the emulsification capacity was obtained by in situ production of two sophorolipid molecules with an m/z of 533 and 583. In summary, its effective diesel removal and high emulsification capacity makes C. catenulata KP324968 an attractive candidate yeast for the degradation of hydrocarbons from aqueous environments.</p>\",\"PeriodicalId\":16370,\"journal\":{\"name\":\"Journal of Molecular Microbiology and Biotechnology\",\"volume\":\"28 5\",\"pages\":\"240-254\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000496797\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000496797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000496797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
摘要
在过去的几十年里,生物降解作为一种环境友好的方法引起了人们对去除碳氢化合物污染物的兴趣。它去除污染物的能力在很大程度上取决于活细胞的类型和环境条件。考虑初始pH值、搅拌速度和初始柴油浓度,统计评估了一种新的产槐脂酵母——念珠菌(Candida catenulata) KP324968对废水中高浓度柴油的降解活性。当初始pH值为4.7,搅拌转速为204 rpm,柴油初始浓度为93.4 g L-1时,6天后总石油烃去除率最高,约为82.1%(生物降解率为0.378 g gcell1 h-1)。在细胞生长阶段,培养基中的乳化指数增加,并在48 h后达到64.6%的最高水平。进一步的实验表明,通过原位生产两种m/z分别为533和583的槐脂分子获得了乳化能力。综上所述,C. catenulata KP324968具有有效的柴油脱除能力和较高的乳化能力,是降解水环境中碳氢化合物的有吸引力的候选酵母。
Fast Biodegradation of Diesel Hydrocarbons at High Concentration by the Sophorolipid-Producing Yeast Candida catenulata KP324968.
In the last decades, biodegradation as an environmentally friendly approach has raised interest in connection with the removal of hydrocarbon pollutants. Its capacity for removing pollutants strongly depends on the type of living cell and environmental conditions. The degradative activity of a new sophorolipid-producing yeast, Candida catenulata KP324968, in the removal of high concentrations of diesel from effluents was statistically evaluated considering the initial pH, the agitation speed, and the initial diesel concentration. The optimal setting of the operational variables at an initial pH of 4.7, an agitation speed of 204 rpm, and an initial diesel concentration of 93.4 g L-1 resulted in the highest total petroleum hydrocarbon removal efficiency: about 82.1% after 6 days (biodegradation rate: 0.378 g gcell-1 h-1). During the cell growth phase, the emulsification index in the medium increased and reached its highest level at 64.6% after 48 h. Further tests indicated that the emulsification capacity was obtained by in situ production of two sophorolipid molecules with an m/z of 533 and 583. In summary, its effective diesel removal and high emulsification capacity makes C. catenulata KP324968 an attractive candidate yeast for the degradation of hydrocarbons from aqueous environments.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.