(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)具有超高可回收能量密度和高储能效率的tio3基高熵介电陶瓷

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hao Wang, Ji Zhang, Shunshun Jiang, Jiajia Wang, Jing Wang and Yaojin Wang
{"title":"(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)具有超高可回收能量密度和高储能效率的tio3基高熵介电陶瓷","authors":"Hao Wang, Ji Zhang, Shunshun Jiang, Jiajia Wang, Jing Wang and Yaojin Wang","doi":"10.1039/D2TA10098C","DOIUrl":null,"url":null,"abstract":"<p >Inspired by the development of high-power/pulsed-power techniques, dielectric capacitors with enormous power densities as well as ultrafast charge/discharge speeds have captured increasing attention and extensive research, particularly ceramic capacitors. Nevertheless, the limited recoverable energy density (<em>W</em><small><sub>rec</sub></small>) and/or low energy storage efficiency (<em>η</em>) of ceramic capacitors delay their applications in capacitive energy storage. Herein, single phase high-entropy (Bi<small><sub>1/6</sub></small>Na<small><sub>1/6</sub></small>Ba<small><sub>1/6</sub></small>Sr<small><sub>1/6</sub></small>Ca<small><sub>1/6</sub></small>Pb<small><sub>1/6</sub></small>)Ti<small><sub>1?<em>x</em></sub></small>Zr<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> dielectric ceramics are designed and investigated. The enhanced dielectric relaxation behavior and fine grain size gave rise to decreased remnant polarization (<em>P</em><small><sub>r</sub></small>) and promoted electric breakdown strength (<em>E</em><small><sub>b</sub></small>). The special electronic structure of Pb<small><sup>2+</sup></small> and Bi<small><sup>3+</sup></small> favors retaining relatively large maximum polarization (<em>P</em><small><sub>max</sub></small>). Accordingly, ultrahigh <em>W</em><small><sub>rec</sub></small> of 8.8 J cm<small><sup>?3</sup></small>, high <em>η</em> of 92.5%, and exceptional thermal reliability (<em>W</em><small><sub>rec</sub></small> = 4.5 J cm<small><sup>?3</sup></small> ± 6.5% in the range of 25–180 °C) are synchronously achieved in the optimum composition of <em>x</em> = 0.12, providing a feasible strategy to explore high-performance dielectric ceramics for applications in electrostatic energy storage.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 10","pages":" 4937-4945"},"PeriodicalIF":10.7000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency†\",\"authors\":\"Hao Wang, Ji Zhang, Shunshun Jiang, Jiajia Wang, Jing Wang and Yaojin Wang\",\"doi\":\"10.1039/D2TA10098C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inspired by the development of high-power/pulsed-power techniques, dielectric capacitors with enormous power densities as well as ultrafast charge/discharge speeds have captured increasing attention and extensive research, particularly ceramic capacitors. Nevertheless, the limited recoverable energy density (<em>W</em><small><sub>rec</sub></small>) and/or low energy storage efficiency (<em>η</em>) of ceramic capacitors delay their applications in capacitive energy storage. Herein, single phase high-entropy (Bi<small><sub>1/6</sub></small>Na<small><sub>1/6</sub></small>Ba<small><sub>1/6</sub></small>Sr<small><sub>1/6</sub></small>Ca<small><sub>1/6</sub></small>Pb<small><sub>1/6</sub></small>)Ti<small><sub>1?<em>x</em></sub></small>Zr<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> dielectric ceramics are designed and investigated. The enhanced dielectric relaxation behavior and fine grain size gave rise to decreased remnant polarization (<em>P</em><small><sub>r</sub></small>) and promoted electric breakdown strength (<em>E</em><small><sub>b</sub></small>). The special electronic structure of Pb<small><sup>2+</sup></small> and Bi<small><sup>3+</sup></small> favors retaining relatively large maximum polarization (<em>P</em><small><sub>max</sub></small>). Accordingly, ultrahigh <em>W</em><small><sub>rec</sub></small> of 8.8 J cm<small><sup>?3</sup></small>, high <em>η</em> of 92.5%, and exceptional thermal reliability (<em>W</em><small><sub>rec</sub></small> = 4.5 J cm<small><sup>?3</sup></small> ± 6.5% in the range of 25–180 °C) are synchronously achieved in the optimum composition of <em>x</em> = 0.12, providing a feasible strategy to explore high-performance dielectric ceramics for applications in electrostatic energy storage.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 10\",\"pages\":\" 4937-4945\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/ta/d2ta10098c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/ta/d2ta10098c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11

摘要

受大功率/脉冲功率技术发展的启发,具有巨大功率密度和超快充放电速度的介质电容器,特别是陶瓷电容器,越来越受到人们的关注和广泛的研究。然而,陶瓷电容器有限的可回收能量密度(Wrec)和/或低的能量存储效率(η)阻碍了其在电容储能中的应用。其中,单相高熵(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)Ti1?设计并研究了xZrxO3介电陶瓷。介质弛豫行为的增强和晶粒的细化导致残余极化(Pr)的降低和电击穿强度(Eb)的提高。Pb2+和Bi3+特殊的电子结构有利于保持较大的最大极化(Pmax)。据此,8.8 jcm ?3、η值高达92.5%,具有优异的热可靠性(Wrec = 4.5 J cm?在x = 0.12的最佳组合下,在25-180°C范围内同步实现了3±6.5%,为探索用于静电储能的高性能介电陶瓷提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency†

(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency†

Inspired by the development of high-power/pulsed-power techniques, dielectric capacitors with enormous power densities as well as ultrafast charge/discharge speeds have captured increasing attention and extensive research, particularly ceramic capacitors. Nevertheless, the limited recoverable energy density (Wrec) and/or low energy storage efficiency (η) of ceramic capacitors delay their applications in capacitive energy storage. Herein, single phase high-entropy (Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)Ti1?xZrxO3 dielectric ceramics are designed and investigated. The enhanced dielectric relaxation behavior and fine grain size gave rise to decreased remnant polarization (Pr) and promoted electric breakdown strength (Eb). The special electronic structure of Pb2+ and Bi3+ favors retaining relatively large maximum polarization (Pmax). Accordingly, ultrahigh Wrec of 8.8 J cm?3, high η of 92.5%, and exceptional thermal reliability (Wrec = 4.5 J cm?3 ± 6.5% in the range of 25–180 °C) are synchronously achieved in the optimum composition of x = 0.12, providing a feasible strategy to explore high-performance dielectric ceramics for applications in electrostatic energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信