Bjørn H Samset, Camilla W Stjern, Elisabeth Andrews, Ralph A Kahn, Gunnar Myhre, Michael Schulz, Gregory L Schuster
{"title":"气溶胶吸收:走向全球和区域约束的进展。","authors":"Bjørn H Samset, Camilla W Stjern, Elisabeth Andrews, Ralph A Kahn, Gunnar Myhre, Michael Schulz, Gregory L Schuster","doi":"10.1007/s40641-018-0091-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Some aerosols absorb solar radiation, altering cloud properties, atmospheric stability and circulation dynamics, and the water cycle. Here we review recent progress towards global and regional constraints on aerosol absorption from observations and modeling, considering physical properties and combined approaches crucial for understanding the total (natural and anthropogenic) influences of aerosols on the climate.</p><p><strong>Recent findings: </strong>We emphasize developments in black carbon absorption alteration due to coating and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, source modeling and size distributions, and validation of high-resolution modeling against a range of observations.</p><p><strong>Summary: </strong>Both observations and modeling of total aerosol absorption, absorbing aerosol optical depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap of developments needed to bring the field substantially forward.</p>","PeriodicalId":54235,"journal":{"name":"Current climate change reports","volume":"4 2","pages":"65-83"},"PeriodicalIF":9.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448288/pdf/40641_2018_Article_91.pdf","citationCount":"0","resultStr":"{\"title\":\"Aerosol Absorption: Progress Towards Global and Regional Constraints.\",\"authors\":\"Bjørn H Samset, Camilla W Stjern, Elisabeth Andrews, Ralph A Kahn, Gunnar Myhre, Michael Schulz, Gregory L Schuster\",\"doi\":\"10.1007/s40641-018-0091-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Some aerosols absorb solar radiation, altering cloud properties, atmospheric stability and circulation dynamics, and the water cycle. Here we review recent progress towards global and regional constraints on aerosol absorption from observations and modeling, considering physical properties and combined approaches crucial for understanding the total (natural and anthropogenic) influences of aerosols on the climate.</p><p><strong>Recent findings: </strong>We emphasize developments in black carbon absorption alteration due to coating and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, source modeling and size distributions, and validation of high-resolution modeling against a range of observations.</p><p><strong>Summary: </strong>Both observations and modeling of total aerosol absorption, absorbing aerosol optical depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap of developments needed to bring the field substantially forward.</p>\",\"PeriodicalId\":54235,\"journal\":{\"name\":\"Current climate change reports\",\"volume\":\"4 2\",\"pages\":\"65-83\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448288/pdf/40641_2018_Article_91.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current climate change reports\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s40641-018-0091-4\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current climate change reports","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s40641-018-0091-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Aerosol Absorption: Progress Towards Global and Regional Constraints.
Purpose of review: Some aerosols absorb solar radiation, altering cloud properties, atmospheric stability and circulation dynamics, and the water cycle. Here we review recent progress towards global and regional constraints on aerosol absorption from observations and modeling, considering physical properties and combined approaches crucial for understanding the total (natural and anthropogenic) influences of aerosols on the climate.
Recent findings: We emphasize developments in black carbon absorption alteration due to coating and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, source modeling and size distributions, and validation of high-resolution modeling against a range of observations.
Summary: Both observations and modeling of total aerosol absorption, absorbing aerosol optical depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap of developments needed to bring the field substantially forward.
期刊介绍:
Current Climate Change Reports is dedicated to exploring the most recent research and policy issues in the dynamically evolving field of Climate Change. The journal covers a broad spectrum of topics, encompassing Ecological Impacts, Advances in Modeling, Sea Level Projections, Extreme Events, Climate Feedback and Sensitivity, Hydrologic Impact, Effects on Human Health, and Economics and Policy Issues. Expert contributors provide reviews on the latest research, assess the effectiveness of available options, and engage in discussions about special considerations. All articles undergo a thorough peer-review process by specialists in the field to ensure accuracy and objectivity.