利用三维卷积神经网络预测立体视频中的晕动病。

IF 4.7 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Tae Min Lee, Jong-Chul Yoon, In-Kwon Lee
{"title":"利用三维卷积神经网络预测立体视频中的晕动病。","authors":"Tae Min Lee,&nbsp;Jong-Chul Yoon,&nbsp;In-Kwon Lee","doi":"10.1109/TVCG.2019.2899186","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a three-dimensional (3D) convolutional neural network (CNN)-based method for predicting the degree of motion sickness induced by a 360° stereoscopic video. We consider the user's eye movement as a new feature, in addition to the motion velocity and depth features of a video used in previous work. For this purpose, we use saliency, optical flow, and disparity maps of an input video, which represent eye movement, velocity, and depth, respectively, as the input of the 3D CNN. To train our machine-learning model, we extend the dataset established in the previous work using two data augmentation techniques: frame shifting and pixel shifting. Consequently, our model can predict the degree of motion sickness more precisely than the previous method, and the results have a more similar correlation to the distribution of ground-truth sickness.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"25 5","pages":"1919-1927"},"PeriodicalIF":4.7000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2019.2899186","citationCount":"43","resultStr":"{\"title\":\"Motion Sickness Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks.\",\"authors\":\"Tae Min Lee,&nbsp;Jong-Chul Yoon,&nbsp;In-Kwon Lee\",\"doi\":\"10.1109/TVCG.2019.2899186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a three-dimensional (3D) convolutional neural network (CNN)-based method for predicting the degree of motion sickness induced by a 360° stereoscopic video. We consider the user's eye movement as a new feature, in addition to the motion velocity and depth features of a video used in previous work. For this purpose, we use saliency, optical flow, and disparity maps of an input video, which represent eye movement, velocity, and depth, respectively, as the input of the 3D CNN. To train our machine-learning model, we extend the dataset established in the previous work using two data augmentation techniques: frame shifting and pixel shifting. Consequently, our model can predict the degree of motion sickness more precisely than the previous method, and the results have a more similar correlation to the distribution of ground-truth sickness.</p>\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\"25 5\",\"pages\":\"1919-1927\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TVCG.2019.2899186\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2019.2899186\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2019.2899186","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 43

摘要

在本文中,我们提出了一种基于三维卷积神经网络(CNN)的方法来预测360°立体视频引起的晕动病程度。除了之前的研究中使用的视频的运动速度和深度特征外,我们还将用户的眼球运动作为一个新的特征。为此,我们使用输入视频的显著性、光流和视差图,它们分别表示眼动、速度和深度,作为3D CNN的输入。为了训练我们的机器学习模型,我们使用两种数据增强技术扩展了之前工作中建立的数据集:帧移位和像素移位。因此,我们的模型可以比以前的方法更准确地预测晕动病的程度,并且结果与地面真实病的分布具有更相似的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Sickness Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks.

In this paper, we propose a three-dimensional (3D) convolutional neural network (CNN)-based method for predicting the degree of motion sickness induced by a 360° stereoscopic video. We consider the user's eye movement as a new feature, in addition to the motion velocity and depth features of a video used in previous work. For this purpose, we use saliency, optical flow, and disparity maps of an input video, which represent eye movement, velocity, and depth, respectively, as the input of the 3D CNN. To train our machine-learning model, we extend the dataset established in the previous work using two data augmentation techniques: frame shifting and pixel shifting. Consequently, our model can predict the degree of motion sickness more precisely than the previous method, and the results have a more similar correlation to the distribution of ground-truth sickness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信