{"title":"广泛存在的微生物nep1样蛋白家族的活性和系统发育。","authors":"Michael F Seidl, Guido Van den Ackerveken","doi":"10.1146/annurev-phyto-082718-100054","DOIUrl":null,"url":null,"abstract":"<p><p>Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) have an extremely broad taxonomic distribution; they occur in bacteria, fungi, and oomycetes. NLPs come in two forms, those that are cytotoxic to eudicot plants and those that are noncytotoxic. Cytotoxic NLPs bind to glycosyl inositol phosphoryl ceramide (GIPC) sphingolipids that are abundant in the outer leaflet of plant plasma membranes. Binding allows the NLP to become cytolytic in eudicots but not monocots. The function of noncytotoxic NLPs remains enigmatic, but the expansion of <i>NLP</i> genes in oomycete genomes suggests they are important. Several plant species have evolved the capacity to recognize NLPs as molecular patterns and trigger plant immunity, e.g., <i>Arabidopsis thaliana</i> detects nlp peptides via the receptor-like protein RLP23. In this review, we provide a historical perspective from discovery to understanding of molecular mechanisms and describe the latest developments in the NLP field to shed light on these fascinating microbial proteins.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"57 ","pages":"367-386"},"PeriodicalIF":9.1000,"publicationDate":"2019-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-phyto-082718-100054","citationCount":"49","resultStr":"{\"title\":\"Activity and Phylogenetics of the Broadly Occurring Family of Microbial Nep1-Like Proteins.\",\"authors\":\"Michael F Seidl, Guido Van den Ackerveken\",\"doi\":\"10.1146/annurev-phyto-082718-100054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) have an extremely broad taxonomic distribution; they occur in bacteria, fungi, and oomycetes. NLPs come in two forms, those that are cytotoxic to eudicot plants and those that are noncytotoxic. Cytotoxic NLPs bind to glycosyl inositol phosphoryl ceramide (GIPC) sphingolipids that are abundant in the outer leaflet of plant plasma membranes. Binding allows the NLP to become cytolytic in eudicots but not monocots. The function of noncytotoxic NLPs remains enigmatic, but the expansion of <i>NLP</i> genes in oomycete genomes suggests they are important. Several plant species have evolved the capacity to recognize NLPs as molecular patterns and trigger plant immunity, e.g., <i>Arabidopsis thaliana</i> detects nlp peptides via the receptor-like protein RLP23. In this review, we provide a historical perspective from discovery to understanding of molecular mechanisms and describe the latest developments in the NLP field to shed light on these fascinating microbial proteins.</p>\",\"PeriodicalId\":8251,\"journal\":{\"name\":\"Annual review of phytopathology\",\"volume\":\"57 \",\"pages\":\"367-386\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2019-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-phyto-082718-100054\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-phyto-082718-100054\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-phyto-082718-100054","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Activity and Phylogenetics of the Broadly Occurring Family of Microbial Nep1-Like Proteins.
Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) have an extremely broad taxonomic distribution; they occur in bacteria, fungi, and oomycetes. NLPs come in two forms, those that are cytotoxic to eudicot plants and those that are noncytotoxic. Cytotoxic NLPs bind to glycosyl inositol phosphoryl ceramide (GIPC) sphingolipids that are abundant in the outer leaflet of plant plasma membranes. Binding allows the NLP to become cytolytic in eudicots but not monocots. The function of noncytotoxic NLPs remains enigmatic, but the expansion of NLP genes in oomycete genomes suggests they are important. Several plant species have evolved the capacity to recognize NLPs as molecular patterns and trigger plant immunity, e.g., Arabidopsis thaliana detects nlp peptides via the receptor-like protein RLP23. In this review, we provide a historical perspective from discovery to understanding of molecular mechanisms and describe the latest developments in the NLP field to shed light on these fascinating microbial proteins.
期刊介绍:
The Annual Review of Phytopathology, established in 1963, covers major advancements in plant pathology, including plant disease diagnosis, pathogens, host-pathogen Interactions, epidemiology and ecology, breeding for resistance and plant disease management, and includes a special section on the development of concepts. The journal is now open access through Annual Reviews' Subscribe to Open program, with articles published under a CC BY license.