Catriona J Mitchell, Catherine M O'Sullivan, Eric Pinloche, Toby Wilkinson, Russell M Morphew, Neil R McEwan
{"title":"利用新一代测序技术确定马肠道蠕虫的多样性:鉴定马的“nemabiome”。","authors":"Catriona J Mitchell, Catherine M O'Sullivan, Eric Pinloche, Toby Wilkinson, Russell M Morphew, Neil R McEwan","doi":"10.1294/jes.30.1","DOIUrl":null,"url":null,"abstract":"<p><p>Next-generation sequencing of DNA from nematode eggs has been utilised to give the first account of the equine 'nemabiome'. In all equine faecal samples investigated, multiple species of Strongylidae were detected, ranging from 7.5 (SEM 0.79) with 99+% identity to sequences in the NCBI database to 13.3 (SEM 0.80) with 90+% identity. This range is typical of the number of species described previously in morphological studies using large quantities of digesta per animal. However, the current method is non-invasive; relies on DNA analysis, avoiding the need for specialist microscopy identification; and can be carried out with small samples, providing significant advantages over current methods.</p>","PeriodicalId":35701,"journal":{"name":"Journal of Equine Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1294/jes.30.1","citationCount":"15","resultStr":"{\"title\":\"Using next-generation sequencing to determine diversity of horse intestinal worms: identifying the equine 'nemabiome'.\",\"authors\":\"Catriona J Mitchell, Catherine M O'Sullivan, Eric Pinloche, Toby Wilkinson, Russell M Morphew, Neil R McEwan\",\"doi\":\"10.1294/jes.30.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Next-generation sequencing of DNA from nematode eggs has been utilised to give the first account of the equine 'nemabiome'. In all equine faecal samples investigated, multiple species of Strongylidae were detected, ranging from 7.5 (SEM 0.79) with 99+% identity to sequences in the NCBI database to 13.3 (SEM 0.80) with 90+% identity. This range is typical of the number of species described previously in morphological studies using large quantities of digesta per animal. However, the current method is non-invasive; relies on DNA analysis, avoiding the need for specialist microscopy identification; and can be carried out with small samples, providing significant advantages over current methods.</p>\",\"PeriodicalId\":35701,\"journal\":{\"name\":\"Journal of Equine Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1294/jes.30.1\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Equine Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1294/jes.30.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Equine Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1294/jes.30.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Veterinary","Score":null,"Total":0}
Using next-generation sequencing to determine diversity of horse intestinal worms: identifying the equine 'nemabiome'.
Next-generation sequencing of DNA from nematode eggs has been utilised to give the first account of the equine 'nemabiome'. In all equine faecal samples investigated, multiple species of Strongylidae were detected, ranging from 7.5 (SEM 0.79) with 99+% identity to sequences in the NCBI database to 13.3 (SEM 0.80) with 90+% identity. This range is typical of the number of species described previously in morphological studies using large quantities of digesta per animal. However, the current method is non-invasive; relies on DNA analysis, avoiding the need for specialist microscopy identification; and can be carried out with small samples, providing significant advantages over current methods.