{"title":"芳基醚的光催化转移氢解†","authors":"Zhikun Peng, Zhixi Wu, Xiaotong Sun and Hongji Li","doi":"10.1039/D3GC02338A","DOIUrl":null,"url":null,"abstract":"<p >Aryl ethers greatly influence lignin depolymerization and the oxygen content in lignin products. Cleaving aryl ethers normally requires harsh conditions such as high-pressure hydrogen gas and elevated temperature. Herein, we developed a synergistic method that combines photocatalytic hydrogen transfer with acid catalysis for H<small><sub>2</sub></small>-free hydrogenolysis of diphenyl ether and aromatic oxygenates at room temperature. The electron-enriched Pt/TiO<small><sub>2</sub></small> surface stored abundant hydrogen species under light irradiation and efficiently catalyzed hydrogen transfer from isopropanol to aryl ethers. The acid mediated the hydrogenation sequence into: hydrogenolysis of aryl C–O bonds > saturation of aryl rings ≫ hydrogenolysis of aliphatic C–O bonds. DFT calculations suggested the aryl ether bond adsorbed on the Pt surface was weakened through protonation. This method delivered 98% yield of aliphatic monomers (73% cyclohexane and 25% cyclohexanol) from cleavage of diphenyl ether, and converted aromatic mixtures into cycloalkanes (57%) and aliphatic alcohols (9%) under mild conditions.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 17","pages":" 6869-6880"},"PeriodicalIF":9.3000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photocatalytic transfer hydrogenolysis of aryl ethers†\",\"authors\":\"Zhikun Peng, Zhixi Wu, Xiaotong Sun and Hongji Li\",\"doi\":\"10.1039/D3GC02338A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aryl ethers greatly influence lignin depolymerization and the oxygen content in lignin products. Cleaving aryl ethers normally requires harsh conditions such as high-pressure hydrogen gas and elevated temperature. Herein, we developed a synergistic method that combines photocatalytic hydrogen transfer with acid catalysis for H<small><sub>2</sub></small>-free hydrogenolysis of diphenyl ether and aromatic oxygenates at room temperature. The electron-enriched Pt/TiO<small><sub>2</sub></small> surface stored abundant hydrogen species under light irradiation and efficiently catalyzed hydrogen transfer from isopropanol to aryl ethers. The acid mediated the hydrogenation sequence into: hydrogenolysis of aryl C–O bonds > saturation of aryl rings ≫ hydrogenolysis of aliphatic C–O bonds. DFT calculations suggested the aryl ether bond adsorbed on the Pt surface was weakened through protonation. This method delivered 98% yield of aliphatic monomers (73% cyclohexane and 25% cyclohexanol) from cleavage of diphenyl ether, and converted aromatic mixtures into cycloalkanes (57%) and aliphatic alcohols (9%) under mild conditions.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 17\",\"pages\":\" 6869-6880\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc02338a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc02338a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photocatalytic transfer hydrogenolysis of aryl ethers†
Aryl ethers greatly influence lignin depolymerization and the oxygen content in lignin products. Cleaving aryl ethers normally requires harsh conditions such as high-pressure hydrogen gas and elevated temperature. Herein, we developed a synergistic method that combines photocatalytic hydrogen transfer with acid catalysis for H2-free hydrogenolysis of diphenyl ether and aromatic oxygenates at room temperature. The electron-enriched Pt/TiO2 surface stored abundant hydrogen species under light irradiation and efficiently catalyzed hydrogen transfer from isopropanol to aryl ethers. The acid mediated the hydrogenation sequence into: hydrogenolysis of aryl C–O bonds > saturation of aryl rings ≫ hydrogenolysis of aliphatic C–O bonds. DFT calculations suggested the aryl ether bond adsorbed on the Pt surface was weakened through protonation. This method delivered 98% yield of aliphatic monomers (73% cyclohexane and 25% cyclohexanol) from cleavage of diphenyl ether, and converted aromatic mixtures into cycloalkanes (57%) and aliphatic alcohols (9%) under mild conditions.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.