{"title":"无所不在启动子指导尼罗罗非鱼脂肪酸δ -6去饱和酶在酿酒酵母中的表达。","authors":"Araya Jangprai, Surintorn Boonanuntanasarn","doi":"10.1159/000499568","DOIUrl":null,"url":null,"abstract":"<p><p>In general, promoters have significant influence on recombinant protein production. Herein, we compared the performance of actin (pACT), phosphoglycerate kinase (pPGK), and translational elongation factor (pTEF) promoters for driving the expression of fatty acid delta-6 (Δ6) desaturase from Nile tilapia (Oreochromis niloticus; Oni-fads2) in Saccharomyces cerevisiae. Our results showed that by applying real-time RT-PCR, the highest level of Oni-fads2 mRNA was observed in S. cerevisiae carrying the expression vector driven by pTEF promoters. Exogenous substrate C18:2n-6 was used to determine Δ6 activity by quantitatively determining the C18:3n-6 product. The results showed that highest Δ6 desaturation was observed when using pTEF as a promoter. Recombinant S. cerevisiae cells expressing Oni-fads2 driven by pTEF were tested with the substrate C18:3n-3, and Δ6 desaturation efficiently converted C18:3n-3 to C18:4n-3. Furthermore, crude extract of recombinant yeast also exhibited Δ6 activity. Thus, recombinant S. cerevisiae cells expressing Oni-fads2 driven by the pTEF promoter have potential as a yeast factory for the sustainable production of long-chain polyunsaturated fatty acids.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":"28 6","pages":"281-292"},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000499568","citationCount":"2","resultStr":"{\"title\":\"Ubiquitous Promoters Direct the Expression of Fatty Acid Delta-6 Desaturase from Nile Tilapia (Oreochromis niloticus) in Saccharomyces cerevisiae.\",\"authors\":\"Araya Jangprai, Surintorn Boonanuntanasarn\",\"doi\":\"10.1159/000499568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In general, promoters have significant influence on recombinant protein production. Herein, we compared the performance of actin (pACT), phosphoglycerate kinase (pPGK), and translational elongation factor (pTEF) promoters for driving the expression of fatty acid delta-6 (Δ6) desaturase from Nile tilapia (Oreochromis niloticus; Oni-fads2) in Saccharomyces cerevisiae. Our results showed that by applying real-time RT-PCR, the highest level of Oni-fads2 mRNA was observed in S. cerevisiae carrying the expression vector driven by pTEF promoters. Exogenous substrate C18:2n-6 was used to determine Δ6 activity by quantitatively determining the C18:3n-6 product. The results showed that highest Δ6 desaturation was observed when using pTEF as a promoter. Recombinant S. cerevisiae cells expressing Oni-fads2 driven by pTEF were tested with the substrate C18:3n-3, and Δ6 desaturation efficiently converted C18:3n-3 to C18:4n-3. Furthermore, crude extract of recombinant yeast also exhibited Δ6 activity. Thus, recombinant S. cerevisiae cells expressing Oni-fads2 driven by the pTEF promoter have potential as a yeast factory for the sustainable production of long-chain polyunsaturated fatty acids.</p>\",\"PeriodicalId\":16370,\"journal\":{\"name\":\"Journal of Molecular Microbiology and Biotechnology\",\"volume\":\"28 6\",\"pages\":\"281-292\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000499568\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000499568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000499568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Ubiquitous Promoters Direct the Expression of Fatty Acid Delta-6 Desaturase from Nile Tilapia (Oreochromis niloticus) in Saccharomyces cerevisiae.
In general, promoters have significant influence on recombinant protein production. Herein, we compared the performance of actin (pACT), phosphoglycerate kinase (pPGK), and translational elongation factor (pTEF) promoters for driving the expression of fatty acid delta-6 (Δ6) desaturase from Nile tilapia (Oreochromis niloticus; Oni-fads2) in Saccharomyces cerevisiae. Our results showed that by applying real-time RT-PCR, the highest level of Oni-fads2 mRNA was observed in S. cerevisiae carrying the expression vector driven by pTEF promoters. Exogenous substrate C18:2n-6 was used to determine Δ6 activity by quantitatively determining the C18:3n-6 product. The results showed that highest Δ6 desaturation was observed when using pTEF as a promoter. Recombinant S. cerevisiae cells expressing Oni-fads2 driven by pTEF were tested with the substrate C18:3n-3, and Δ6 desaturation efficiently converted C18:3n-3 to C18:4n-3. Furthermore, crude extract of recombinant yeast also exhibited Δ6 activity. Thus, recombinant S. cerevisiae cells expressing Oni-fads2 driven by the pTEF promoter have potential as a yeast factory for the sustainable production of long-chain polyunsaturated fatty acids.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.