探索微生物多样性,发现新的分子技术。

IF 1.1 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
Feng Zhang
{"title":"探索微生物多样性,发现新的分子技术。","authors":"Feng Zhang","doi":"10.2302/kjm.68-002-ABST","DOIUrl":null,"url":null,"abstract":"<p><p>Many powerful molecular biology tools have their origin in nature. From restriction enzymes to CRISPR-Cas9, microbes utilize a diverse array of systems to get ahead evolutionarily. We are exploring this natural diversity through bioinformatics, biochemical, and molecular work to better understand the fundamental ways in which microbes and other living organisms sense and respond to their environment and as possible to develop these natural systems as molecular tools and to improve human health. Building on our demonstration that Cas9 can be repurposed for precision genome editing in mammalian cells, we look for novel CRISPR-Cas systems that are different and may have other useful properties. This led to the discovery of several new CRISPR systems, including the CRISPR-Cas13 family that target RNA, rather than DNA. We have developed a toolbox for RNA modulation based on Cas13, including methods for precision base editing, adding to our robust toolbox for DNA based on Cas9 and Cas12. We are expanding our biodiscovery efforts to search for new microbial proteins that may be adapted for applications beyond genome and transcriptome modulation, capitalizing on the growing volume of microbial genomic sequences. We are particularly interested in identifying new therapeutic modalities and vehicles for delivering them into patients. We hope that additional robust tools and delivery options will further accelerate research into human disease and open up new therapeutic possibilities.</p>","PeriodicalId":46245,"journal":{"name":"KEIO JOURNAL OF MEDICINE","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2302/kjm.68-002-ABST","citationCount":"2","resultStr":"{\"title\":\"Exploration of Microbial Diversity to Discover Novel Molecular Technologies.\",\"authors\":\"Feng Zhang\",\"doi\":\"10.2302/kjm.68-002-ABST\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many powerful molecular biology tools have their origin in nature. From restriction enzymes to CRISPR-Cas9, microbes utilize a diverse array of systems to get ahead evolutionarily. We are exploring this natural diversity through bioinformatics, biochemical, and molecular work to better understand the fundamental ways in which microbes and other living organisms sense and respond to their environment and as possible to develop these natural systems as molecular tools and to improve human health. Building on our demonstration that Cas9 can be repurposed for precision genome editing in mammalian cells, we look for novel CRISPR-Cas systems that are different and may have other useful properties. This led to the discovery of several new CRISPR systems, including the CRISPR-Cas13 family that target RNA, rather than DNA. We have developed a toolbox for RNA modulation based on Cas13, including methods for precision base editing, adding to our robust toolbox for DNA based on Cas9 and Cas12. We are expanding our biodiscovery efforts to search for new microbial proteins that may be adapted for applications beyond genome and transcriptome modulation, capitalizing on the growing volume of microbial genomic sequences. We are particularly interested in identifying new therapeutic modalities and vehicles for delivering them into patients. We hope that additional robust tools and delivery options will further accelerate research into human disease and open up new therapeutic possibilities.</p>\",\"PeriodicalId\":46245,\"journal\":{\"name\":\"KEIO JOURNAL OF MEDICINE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2302/kjm.68-002-ABST\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KEIO JOURNAL OF MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2302/kjm.68-002-ABST\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KEIO JOURNAL OF MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2302/kjm.68-002-ABST","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

摘要

许多强大的分子生物学工具都源自大自然。从限制酶到CRISPR-Cas9,微生物利用各种不同的系统来实现进化。我们正在通过生物信息学、生物化学和分子工作探索这种自然多样性,以便更好地了解微生物和其他生物体感知和应对环境的基本方式,并尽可能将这些自然系统开发为分子工具,改善人类健康。我们证明 Cas9 可用于哺乳动物细胞的精准基因组编辑,在此基础上,我们寻找与之不同并可能具有其他有用特性的新型 CRISPR-Cas 系统。这导致我们发现了几种新的CRISPR系统,包括靶向RNA而非DNA的CRISPR-Cas13家族。我们开发了一个基于Cas13的RNA调控工具箱,包括精确碱基编辑的方法,为我们基于Cas9和Cas12的DNA工具箱增添了强大的功能。我们正在扩大我们的生物发现工作,利用日益增长的微生物基因组序列,寻找可用于基因组和转录组调控以外应用的新微生物蛋白。我们对确定新的治疗方式和将其输送到患者体内的工具特别感兴趣。我们希望,更多强大的工具和给药方案将进一步加快人类疾病的研究,并开辟新的治疗可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of Microbial Diversity to Discover Novel Molecular Technologies.

Many powerful molecular biology tools have their origin in nature. From restriction enzymes to CRISPR-Cas9, microbes utilize a diverse array of systems to get ahead evolutionarily. We are exploring this natural diversity through bioinformatics, biochemical, and molecular work to better understand the fundamental ways in which microbes and other living organisms sense and respond to their environment and as possible to develop these natural systems as molecular tools and to improve human health. Building on our demonstration that Cas9 can be repurposed for precision genome editing in mammalian cells, we look for novel CRISPR-Cas systems that are different and may have other useful properties. This led to the discovery of several new CRISPR systems, including the CRISPR-Cas13 family that target RNA, rather than DNA. We have developed a toolbox for RNA modulation based on Cas13, including methods for precision base editing, adding to our robust toolbox for DNA based on Cas9 and Cas12. We are expanding our biodiscovery efforts to search for new microbial proteins that may be adapted for applications beyond genome and transcriptome modulation, capitalizing on the growing volume of microbial genomic sequences. We are particularly interested in identifying new therapeutic modalities and vehicles for delivering them into patients. We hope that additional robust tools and delivery options will further accelerate research into human disease and open up new therapeutic possibilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
KEIO JOURNAL OF MEDICINE
KEIO JOURNAL OF MEDICINE MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
3.10
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信