荧光显微图像中的内体结构自动检测和定位。

Dongyun Lin, Zhiping Lin, Ramraj Velmurugan, Raimund J Ober
{"title":"荧光显微图像中的内体结构自动检测和定位。","authors":"Dongyun Lin,&nbsp;Zhiping Lin,&nbsp;Ramraj Velmurugan,&nbsp;Raimund J Ober","doi":"10.1109/ISCAS.2017.8050242","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a modified spatially-constrained similarity measure (mSCSM) method for endosomal structure detection and localization under the bag-of-words (BoW) framework. To our best knowledge, the proposed mSCSM is the first method for fully automatic detection and localization of complex subcellular compartments like endosomes. Essentially, a new similarity score and a novel two-stage output control scheme are proposed for localization by extracting discriminative information within a group of query images. Compared with the original SCSM which is formulated for instance localization, the proposed mSCSM can address category based localization problems. The preliminary experimental results show the proposed mSCSM can correctly detect and localize 79.17% of the existing endosomal structures in the microscopic images of human myeloid endothelial cells.</p>","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"2017 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ISCAS.2017.8050242","citationCount":"2","resultStr":"{\"title\":\"Automatic Endosomal Structure Detection And Localization in Fluorescence Microscopic Images.\",\"authors\":\"Dongyun Lin,&nbsp;Zhiping Lin,&nbsp;Ramraj Velmurugan,&nbsp;Raimund J Ober\",\"doi\":\"10.1109/ISCAS.2017.8050242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a modified spatially-constrained similarity measure (mSCSM) method for endosomal structure detection and localization under the bag-of-words (BoW) framework. To our best knowledge, the proposed mSCSM is the first method for fully automatic detection and localization of complex subcellular compartments like endosomes. Essentially, a new similarity score and a novel two-stage output control scheme are proposed for localization by extracting discriminative information within a group of query images. Compared with the original SCSM which is formulated for instance localization, the proposed mSCSM can address category based localization problems. The preliminary experimental results show the proposed mSCSM can correctly detect and localize 79.17% of the existing endosomal structures in the microscopic images of human myeloid endothelial cells.</p>\",\"PeriodicalId\":91083,\"journal\":{\"name\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"volume\":\"2017 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ISCAS.2017.8050242\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2017.8050242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2017.8050242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种改进的空间约束相似性度量(mSCSM)方法,用于词袋(BoW)框架下的内体结构检测和定位。据我们所知,所提出的mSCSM是第一个全自动检测和定位复杂亚细胞区室(如核内体)的方法。从本质上讲,提出了一种新的相似度评分和一种新的两阶段输出控制方案,通过从一组查询图像中提取判别信息来进行定位。与传统的以定位为基础的多类别定位方法相比,本文提出的多类别定位方法能够解决基于类别的定位问题。初步实验结果表明,所提出的mSCSM能够正确检测和定位人髓内皮细胞显微图像中79.17%的现有内体结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automatic Endosomal Structure Detection And Localization in Fluorescence Microscopic Images.

Automatic Endosomal Structure Detection And Localization in Fluorescence Microscopic Images.

Automatic Endosomal Structure Detection And Localization in Fluorescence Microscopic Images.

This paper proposes a modified spatially-constrained similarity measure (mSCSM) method for endosomal structure detection and localization under the bag-of-words (BoW) framework. To our best knowledge, the proposed mSCSM is the first method for fully automatic detection and localization of complex subcellular compartments like endosomes. Essentially, a new similarity score and a novel two-stage output control scheme are proposed for localization by extracting discriminative information within a group of query images. Compared with the original SCSM which is formulated for instance localization, the proposed mSCSM can address category based localization problems. The preliminary experimental results show the proposed mSCSM can correctly detect and localize 79.17% of the existing endosomal structures in the microscopic images of human myeloid endothelial cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信