在AACU序列上切割RNA的嗜肺军团菌MazF同源物的鉴定。

IF 1.2 Q2 Biochemistry, Genetics and Molecular Biology
Mao Shaku, Jung-Ho Park, Masayori Inouye, Yoshihiro Yamaguchi
{"title":"在AACU序列上切割RNA的嗜肺军团菌MazF同源物的鉴定。","authors":"Mao Shaku,&nbsp;Jung-Ho Park,&nbsp;Masayori Inouye,&nbsp;Yoshihiro Yamaguchi","doi":"10.1159/000497146","DOIUrl":null,"url":null,"abstract":"<p><p>MazF is a sequence-specific endoribonuclease that is widely conserved in bacteria and archaea. Here, we found an MazF homologue (MazF-lp; LPO-p0114) in Legionella pneumophila. The mazF-lp gene overlaps 14 base pairs with the upstream gene mazE-lp (MazE-lp; LPO-p0115). The induction of mazF-lp caused cell growth arrest, while mazE-lp co-induction recovered cell growth in Escherichia coli. In vivo and in vitro primer extension experiments showed that MazF-lp is a sequence-specific endoribonuclease cleaving RNA at AACU. The endoribonuclease activity of purified MazF-lp was inhibited by purified MazE-lp. We found that MazE-lp and the MazEF-lp complex specifically bind to the palindromic sequence present in the 5'-untranslated region of the mazEF-lp operon. MazE-lp and MazEF-lp both likely function as a repressor for the mazEF-lp operon and for other genes, including icmR, whose gene product functions as a secretion chaperone for the IcmQ pore-forming protein, by specifically binding to the palindromic sequence in 5'-UTR of these genes.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":"28 6","pages":"269-280"},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000497146","citationCount":"4","resultStr":"{\"title\":\"Identification of MazF Homologue in Legionella pneumophila Which Cleaves RNA at the AACU Sequence.\",\"authors\":\"Mao Shaku,&nbsp;Jung-Ho Park,&nbsp;Masayori Inouye,&nbsp;Yoshihiro Yamaguchi\",\"doi\":\"10.1159/000497146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MazF is a sequence-specific endoribonuclease that is widely conserved in bacteria and archaea. Here, we found an MazF homologue (MazF-lp; LPO-p0114) in Legionella pneumophila. The mazF-lp gene overlaps 14 base pairs with the upstream gene mazE-lp (MazE-lp; LPO-p0115). The induction of mazF-lp caused cell growth arrest, while mazE-lp co-induction recovered cell growth in Escherichia coli. In vivo and in vitro primer extension experiments showed that MazF-lp is a sequence-specific endoribonuclease cleaving RNA at AACU. The endoribonuclease activity of purified MazF-lp was inhibited by purified MazE-lp. We found that MazE-lp and the MazEF-lp complex specifically bind to the palindromic sequence present in the 5'-untranslated region of the mazEF-lp operon. MazE-lp and MazEF-lp both likely function as a repressor for the mazEF-lp operon and for other genes, including icmR, whose gene product functions as a secretion chaperone for the IcmQ pore-forming protein, by specifically binding to the palindromic sequence in 5'-UTR of these genes.</p>\",\"PeriodicalId\":16370,\"journal\":{\"name\":\"Journal of Molecular Microbiology and Biotechnology\",\"volume\":\"28 6\",\"pages\":\"269-280\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000497146\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000497146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000497146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

MazF是一种序列特异性核糖核酸内切酶,在细菌和古细菌中广泛保守。在这里,我们发现了一个MazF同源物(MazF-lp;嗜肺军团菌LPO-p0114)。mazF-lp基因与上游基因mazE-lp (mazE-lp;LPO-p0115)。在大肠杆菌中,mazF-lp的诱导导致细胞生长停滞,而mazE-lp的共诱导使细胞恢复生长。体内和体外引物延伸实验表明,MazF-lp是AACU上序列特异性核糖核酸内切酶切割RNA。纯化后的MazF-lp核糖核酸内酶活性被纯化后的MazE-lp抑制。我们发现,MazE-lp和MazE-lp复合物特异性结合在MazE-lp操纵子的5'-未翻译区域的回文序列上。MazE-lp和MazEF-lp都可能作为MazEF-lp操纵子和其他基因的抑制因子,包括icmR,其基因产物通过特异性结合这些基因的5'-UTR中的回语序列,作为IcmQ孔形成蛋白的分泌伴侣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of MazF Homologue in Legionella pneumophila Which Cleaves RNA at the AACU Sequence.

MazF is a sequence-specific endoribonuclease that is widely conserved in bacteria and archaea. Here, we found an MazF homologue (MazF-lp; LPO-p0114) in Legionella pneumophila. The mazF-lp gene overlaps 14 base pairs with the upstream gene mazE-lp (MazE-lp; LPO-p0115). The induction of mazF-lp caused cell growth arrest, while mazE-lp co-induction recovered cell growth in Escherichia coli. In vivo and in vitro primer extension experiments showed that MazF-lp is a sequence-specific endoribonuclease cleaving RNA at AACU. The endoribonuclease activity of purified MazF-lp was inhibited by purified MazE-lp. We found that MazE-lp and the MazEF-lp complex specifically bind to the palindromic sequence present in the 5'-untranslated region of the mazEF-lp operon. MazE-lp and MazEF-lp both likely function as a repressor for the mazEF-lp operon and for other genes, including icmR, whose gene product functions as a secretion chaperone for the IcmQ pore-forming protein, by specifically binding to the palindromic sequence in 5'-UTR of these genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Microbiology and Biotechnology
Journal of Molecular Microbiology and Biotechnology 生物-生物工程与应用微生物
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信