Lindsey A Lee, Anastasia Karabina, Lindsey J Broadwell, Leslie A Leinwand
{"title":"在特殊肌肉中发现的古代肌球蛋白。","authors":"Lindsey A Lee, Anastasia Karabina, Lindsey J Broadwell, Leslie A Leinwand","doi":"10.1186/s13395-019-0192-3","DOIUrl":null,"url":null,"abstract":"<p><p>Striated muscles express an array of sarcomeric myosin motors that are tuned to accomplish specific tasks. Each myosin isoform found in muscle fibers confers unique contractile properties to the fiber in order to meet the demands of the muscle. The sarcomeric myosin heavy chain (MYH) genes expressed in the major cardiac and skeletal muscles have been studied for decades. However, three ancient myosins, MYH7b, MYH15, and MYH16, remained uncharacterized due to their unique expression patterns in common mammalian model organisms and due to their relatively recent discovery in these genomes. This article reviews the literature surrounding these three ancient sarcomeric myosins and the specialized muscles in which they are expressed. Further study of these ancient myosins and how they contribute to the functions of the specialized muscles may provide novel insight into the history of striated muscle evolution.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"7"},"PeriodicalIF":5.3000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402096/pdf/","citationCount":"0","resultStr":"{\"title\":\"The ancient sarcomeric myosins found in specialized muscles.\",\"authors\":\"Lindsey A Lee, Anastasia Karabina, Lindsey J Broadwell, Leslie A Leinwand\",\"doi\":\"10.1186/s13395-019-0192-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Striated muscles express an array of sarcomeric myosin motors that are tuned to accomplish specific tasks. Each myosin isoform found in muscle fibers confers unique contractile properties to the fiber in order to meet the demands of the muscle. The sarcomeric myosin heavy chain (MYH) genes expressed in the major cardiac and skeletal muscles have been studied for decades. However, three ancient myosins, MYH7b, MYH15, and MYH16, remained uncharacterized due to their unique expression patterns in common mammalian model organisms and due to their relatively recent discovery in these genomes. This article reviews the literature surrounding these three ancient sarcomeric myosins and the specialized muscles in which they are expressed. Further study of these ancient myosins and how they contribute to the functions of the specialized muscles may provide novel insight into the history of striated muscle evolution.</p>\",\"PeriodicalId\":21747,\"journal\":{\"name\":\"Skeletal Muscle\",\"volume\":\"9 1\",\"pages\":\"7\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2019-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13395-019-0192-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-019-0192-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The ancient sarcomeric myosins found in specialized muscles.
Striated muscles express an array of sarcomeric myosin motors that are tuned to accomplish specific tasks. Each myosin isoform found in muscle fibers confers unique contractile properties to the fiber in order to meet the demands of the muscle. The sarcomeric myosin heavy chain (MYH) genes expressed in the major cardiac and skeletal muscles have been studied for decades. However, three ancient myosins, MYH7b, MYH15, and MYH16, remained uncharacterized due to their unique expression patterns in common mammalian model organisms and due to their relatively recent discovery in these genomes. This article reviews the literature surrounding these three ancient sarcomeric myosins and the specialized muscles in which they are expressed. Further study of these ancient myosins and how they contribute to the functions of the specialized muscles may provide novel insight into the history of striated muscle evolution.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.