{"title":"小麦品种Dacke的α-醇溶蛋白基因在Bg250水稻中的分子特征及表达。","authors":"Kirushanthy Kajendran, Naduviladath Vishvanath Chandrasekharan, Chamari Madhu Hettiarachchi, Wijerupage Sandhya Sulochana Wijesundera","doi":"10.1080/21645698.2019.1622990","DOIUrl":null,"url":null,"abstract":"<p><p>The main seed storage protein in wheat is gluten. It consists of gliadin and glutenins. Gluten gives high elasticity and extensibility during bread making, facilitating the formation of the dough. Rice is the staple food of Sri Lankans but, it has poor dough making ability compared to wheat. The aim of the present work was to characterize, clone and express α-gliadin in the T<sub>0</sub> generation of Bg 250 rice variety as a preliminary step in improving the dough making ability of rice flour. Five α-gliadin recombinant pCR™<i>2.1-TOPO</i>® clones were selected for sequence analysis. Of the five clones, two functional genes and three pseudogenes were identified. Phylogenetic analysis revealed the two functional genes, (accession numbers KC660359 and KC660358) to be closely related to the α-gliadin genes of <i>Triticum monococcum</i>. The α-gliadin gene (KC660359) contained five cysteine residues, one less than the normal occurrence of cysteine residues in α-gliadin genes. To date there are no reports on expression of gliadin gene in transgenic rice. This novel gene was successfully expressed in the Sri Lankan rice variety Bg 250 under the control of the rice GluB-1 endosperm specific promoter.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"10 2","pages":"102-114"},"PeriodicalIF":4.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2019.1622990","citationCount":"3","resultStr":"{\"title\":\"Molecular characterization and expression of α-gliadin genes from wheat cultivar Dacke in Bg 250 rice variety.\",\"authors\":\"Kirushanthy Kajendran, Naduviladath Vishvanath Chandrasekharan, Chamari Madhu Hettiarachchi, Wijerupage Sandhya Sulochana Wijesundera\",\"doi\":\"10.1080/21645698.2019.1622990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main seed storage protein in wheat is gluten. It consists of gliadin and glutenins. Gluten gives high elasticity and extensibility during bread making, facilitating the formation of the dough. Rice is the staple food of Sri Lankans but, it has poor dough making ability compared to wheat. The aim of the present work was to characterize, clone and express α-gliadin in the T<sub>0</sub> generation of Bg 250 rice variety as a preliminary step in improving the dough making ability of rice flour. Five α-gliadin recombinant pCR™<i>2.1-TOPO</i>® clones were selected for sequence analysis. Of the five clones, two functional genes and three pseudogenes were identified. Phylogenetic analysis revealed the two functional genes, (accession numbers KC660359 and KC660358) to be closely related to the α-gliadin genes of <i>Triticum monococcum</i>. The α-gliadin gene (KC660359) contained five cysteine residues, one less than the normal occurrence of cysteine residues in α-gliadin genes. To date there are no reports on expression of gliadin gene in transgenic rice. This novel gene was successfully expressed in the Sri Lankan rice variety Bg 250 under the control of the rice GluB-1 endosperm specific promoter.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\"10 2\",\"pages\":\"102-114\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21645698.2019.1622990\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2019.1622990\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2019.1622990","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Molecular characterization and expression of α-gliadin genes from wheat cultivar Dacke in Bg 250 rice variety.
The main seed storage protein in wheat is gluten. It consists of gliadin and glutenins. Gluten gives high elasticity and extensibility during bread making, facilitating the formation of the dough. Rice is the staple food of Sri Lankans but, it has poor dough making ability compared to wheat. The aim of the present work was to characterize, clone and express α-gliadin in the T0 generation of Bg 250 rice variety as a preliminary step in improving the dough making ability of rice flour. Five α-gliadin recombinant pCR™2.1-TOPO® clones were selected for sequence analysis. Of the five clones, two functional genes and three pseudogenes were identified. Phylogenetic analysis revealed the two functional genes, (accession numbers KC660359 and KC660358) to be closely related to the α-gliadin genes of Triticum monococcum. The α-gliadin gene (KC660359) contained five cysteine residues, one less than the normal occurrence of cysteine residues in α-gliadin genes. To date there are no reports on expression of gliadin gene in transgenic rice. This novel gene was successfully expressed in the Sri Lankan rice variety Bg 250 under the control of the rice GluB-1 endosperm specific promoter.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments