Peter Kilbride, Marina Vazquez Rull, Adam Townsend, Helen Wilson, John Morris
{"title":"生物相关制剂中的剪切增稠液。","authors":"Peter Kilbride, Marina Vazquez Rull, Adam Townsend, Helen Wilson, John Morris","doi":"10.3233/BIR-180196","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rheology of shear thickening fluids is well characterized for many physical applications, however the literature surrounding biologically or cryobiologically compatible shear thickening fluids is less well understood.</p><p><strong>Objective: </strong>This study examined fluids consisting of corn-derived hydroxyethyl starch with a variety of sugars and cryoprotectants to characterize their shear-rate viscosity relationship. The objective was to establish if cryobiologically relevant materials could be used to afford biologics protection through shear-thickening.</p><p><strong>Results: </strong>Fluids consisting of 50% hydroxyethyl starch by weight exhibited shear thickening with a variety of cryoprotectants. Lowering the temperature of the fluid both reduced critical shear rates and enhanced thickening magnitude. Starch derived from corn, wheat, and rice all exhibited non-Newtonian shear-dependent viscosity behaviour at 50% by weight in water. Between the starch sources however, the shear-rate viscosity relationship varied widely, with wheat-derived starch shear thinning, and the remaining starches forming shear thickening fluids. Different starch sources had different baseline viscosities, critical shear rates, and rates of viscosity increase.</p><p><strong>Conclusions: </strong>This study established that shear thickening is compatible with cryobiologically relevant agents, particularly so at lower temperatures. This forms the basis for harnessing these phenomena in biological processes such as cryopreservation.</p>","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"56 1","pages":"39-50"},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-180196","citationCount":"3","resultStr":"{\"title\":\"Shear-thickening fluids in biologically relevant agents.\",\"authors\":\"Peter Kilbride, Marina Vazquez Rull, Adam Townsend, Helen Wilson, John Morris\",\"doi\":\"10.3233/BIR-180196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The rheology of shear thickening fluids is well characterized for many physical applications, however the literature surrounding biologically or cryobiologically compatible shear thickening fluids is less well understood.</p><p><strong>Objective: </strong>This study examined fluids consisting of corn-derived hydroxyethyl starch with a variety of sugars and cryoprotectants to characterize their shear-rate viscosity relationship. The objective was to establish if cryobiologically relevant materials could be used to afford biologics protection through shear-thickening.</p><p><strong>Results: </strong>Fluids consisting of 50% hydroxyethyl starch by weight exhibited shear thickening with a variety of cryoprotectants. Lowering the temperature of the fluid both reduced critical shear rates and enhanced thickening magnitude. Starch derived from corn, wheat, and rice all exhibited non-Newtonian shear-dependent viscosity behaviour at 50% by weight in water. Between the starch sources however, the shear-rate viscosity relationship varied widely, with wheat-derived starch shear thinning, and the remaining starches forming shear thickening fluids. Different starch sources had different baseline viscosities, critical shear rates, and rates of viscosity increase.</p><p><strong>Conclusions: </strong>This study established that shear thickening is compatible with cryobiologically relevant agents, particularly so at lower temperatures. This forms the basis for harnessing these phenomena in biological processes such as cryopreservation.</p>\",\"PeriodicalId\":9167,\"journal\":{\"name\":\"Biorheology\",\"volume\":\"56 1\",\"pages\":\"39-50\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BIR-180196\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biorheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BIR-180196\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-180196","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Shear-thickening fluids in biologically relevant agents.
Background: The rheology of shear thickening fluids is well characterized for many physical applications, however the literature surrounding biologically or cryobiologically compatible shear thickening fluids is less well understood.
Objective: This study examined fluids consisting of corn-derived hydroxyethyl starch with a variety of sugars and cryoprotectants to characterize their shear-rate viscosity relationship. The objective was to establish if cryobiologically relevant materials could be used to afford biologics protection through shear-thickening.
Results: Fluids consisting of 50% hydroxyethyl starch by weight exhibited shear thickening with a variety of cryoprotectants. Lowering the temperature of the fluid both reduced critical shear rates and enhanced thickening magnitude. Starch derived from corn, wheat, and rice all exhibited non-Newtonian shear-dependent viscosity behaviour at 50% by weight in water. Between the starch sources however, the shear-rate viscosity relationship varied widely, with wheat-derived starch shear thinning, and the remaining starches forming shear thickening fluids. Different starch sources had different baseline viscosities, critical shear rates, and rates of viscosity increase.
Conclusions: This study established that shear thickening is compatible with cryobiologically relevant agents, particularly so at lower temperatures. This forms the basis for harnessing these phenomena in biological processes such as cryopreservation.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.