Mattia Bernetti, Matteo Masetti, Walter Rocchia, Andrea Cavalli
{"title":"药物结合动力学和停留时间。","authors":"Mattia Bernetti, Matteo Masetti, Walter Rocchia, Andrea Cavalli","doi":"10.1146/annurev-physchem-042018-052340","DOIUrl":null,"url":null,"abstract":"<p><p>The kinetics of drug binding and unbinding is assuming an increasingly crucial role in the long, costly process of bringing a new medicine to patients. For example, the time a drug spends in contact with its biological target is known as residence time (the inverse of the kinetic constant of the drug-target unbinding, 1/<i>k</i><sub>off</sub>). Recent reports suggest that residence time could predict drug efficacy in vivo, perhaps even more effectively than conventional thermodynamic parameters (free energy, enthalpy, entropy). There are many experimental and computational methods for predicting drug-target residence time at an early stage of drug discovery programs. Here, we review and discuss the methodological approaches to estimating drug binding kinetics and residence time. We first introduce the theoretical background of drug binding kinetics from a physicochemical standpoint. We then analyze the recent literature in the field, starting from the experimental methodologies and applications thereof and moving to theoretical and computational approaches to the kinetics of drug binding and unbinding. We acknowledge the central role of molecular dynamics and related methods, which comprise a great number of the computational methods and applications reviewed here. However, we also consider kinetic Monte Carlo. We conclude with the outlook that drug (un)binding kinetics may soon become a go/no go step in the discovery and development of new medicines.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"70 ","pages":"143-171"},"PeriodicalIF":11.7000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-physchem-042018-052340","citationCount":"85","resultStr":"{\"title\":\"Kinetics of Drug Binding and Residence Time.\",\"authors\":\"Mattia Bernetti, Matteo Masetti, Walter Rocchia, Andrea Cavalli\",\"doi\":\"10.1146/annurev-physchem-042018-052340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kinetics of drug binding and unbinding is assuming an increasingly crucial role in the long, costly process of bringing a new medicine to patients. For example, the time a drug spends in contact with its biological target is known as residence time (the inverse of the kinetic constant of the drug-target unbinding, 1/<i>k</i><sub>off</sub>). Recent reports suggest that residence time could predict drug efficacy in vivo, perhaps even more effectively than conventional thermodynamic parameters (free energy, enthalpy, entropy). There are many experimental and computational methods for predicting drug-target residence time at an early stage of drug discovery programs. Here, we review and discuss the methodological approaches to estimating drug binding kinetics and residence time. We first introduce the theoretical background of drug binding kinetics from a physicochemical standpoint. We then analyze the recent literature in the field, starting from the experimental methodologies and applications thereof and moving to theoretical and computational approaches to the kinetics of drug binding and unbinding. We acknowledge the central role of molecular dynamics and related methods, which comprise a great number of the computational methods and applications reviewed here. However, we also consider kinetic Monte Carlo. We conclude with the outlook that drug (un)binding kinetics may soon become a go/no go step in the discovery and development of new medicines.</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":\"70 \",\"pages\":\"143-171\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2019-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-physchem-042018-052340\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-042018-052340\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-042018-052340","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The kinetics of drug binding and unbinding is assuming an increasingly crucial role in the long, costly process of bringing a new medicine to patients. For example, the time a drug spends in contact with its biological target is known as residence time (the inverse of the kinetic constant of the drug-target unbinding, 1/koff). Recent reports suggest that residence time could predict drug efficacy in vivo, perhaps even more effectively than conventional thermodynamic parameters (free energy, enthalpy, entropy). There are many experimental and computational methods for predicting drug-target residence time at an early stage of drug discovery programs. Here, we review and discuss the methodological approaches to estimating drug binding kinetics and residence time. We first introduce the theoretical background of drug binding kinetics from a physicochemical standpoint. We then analyze the recent literature in the field, starting from the experimental methodologies and applications thereof and moving to theoretical and computational approaches to the kinetics of drug binding and unbinding. We acknowledge the central role of molecular dynamics and related methods, which comprise a great number of the computational methods and applications reviewed here. However, we also consider kinetic Monte Carlo. We conclude with the outlook that drug (un)binding kinetics may soon become a go/no go step in the discovery and development of new medicines.
期刊介绍:
The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.