Arakkaveettil Kabeer Farha , Thasneem TR , Aswathy Purushothaman , Jaseetha Abdul Salam , Abdulla Mohamed Hatha
{"title":"阿拉伯海东部陆坡海洋细菌的系统发育多样性及其生物技术潜力","authors":"Arakkaveettil Kabeer Farha , Thasneem TR , Aswathy Purushothaman , Jaseetha Abdul Salam , Abdulla Mohamed Hatha","doi":"10.1016/j.jgeb.2018.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Marine environments are substantially untapped source for the isolation of bacteria with the capacity to produce various extracellular hydrolytic enzymes, which have important ecological roles and promising biotechnological applications. Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. A number of marine hydrolases have been described, including amylases, lipases and proteases, which are being used extensively for biotechnological applications. The present study was carried out to isolate marine bacteria from continental slope sediments of the eastern Arabian Sea and explore their biotechnological potential. Among the 119 isolates screened, producers of amylases (15%), caseinases (40%), cellulases (40%), gelatinases (60%), lipases (26%), ligninases (33%), phytase (11%) and Malachite Green dye degraders (16%) were detected. Phylogenetic analysis based on 16S rRNA gene sequencing showed that predominant marine sediment bacteria possessing more than four enzymatic activities belonged to the phyla Firmicutes and Proteobacteria, was assigned to the genera <em>Bacillus, Planococcus, Staphylococcus, Chryseomicrobium, Exiguobacterium</em> and <em>Halomonas.</em> Biodegradation of the dye Malachite Green using the liquid decolorization assay showed that both the individual cultures (<em>Bacillus vietnamensis, Planococcus maritimus and Bacillus pumilus</em>) and their consortium were able to decolorize more than 70% of dye within 24 h of incubation. This is the first report on diversity and extracellular hydrolytic enzymatic activities and bioremediation properties of bacteria from continental slope sediment of eastern Arabian Sea.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jgeb.2018.06.002","citationCount":"12","resultStr":"{\"title\":\"Phylogenetic diversity and biotechnological potentials of marine bacteria from continental slope of eastern Arabian Sea\",\"authors\":\"Arakkaveettil Kabeer Farha , Thasneem TR , Aswathy Purushothaman , Jaseetha Abdul Salam , Abdulla Mohamed Hatha\",\"doi\":\"10.1016/j.jgeb.2018.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Marine environments are substantially untapped source for the isolation of bacteria with the capacity to produce various extracellular hydrolytic enzymes, which have important ecological roles and promising biotechnological applications. Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. A number of marine hydrolases have been described, including amylases, lipases and proteases, which are being used extensively for biotechnological applications. The present study was carried out to isolate marine bacteria from continental slope sediments of the eastern Arabian Sea and explore their biotechnological potential. Among the 119 isolates screened, producers of amylases (15%), caseinases (40%), cellulases (40%), gelatinases (60%), lipases (26%), ligninases (33%), phytase (11%) and Malachite Green dye degraders (16%) were detected. Phylogenetic analysis based on 16S rRNA gene sequencing showed that predominant marine sediment bacteria possessing more than four enzymatic activities belonged to the phyla Firmicutes and Proteobacteria, was assigned to the genera <em>Bacillus, Planococcus, Staphylococcus, Chryseomicrobium, Exiguobacterium</em> and <em>Halomonas.</em> Biodegradation of the dye Malachite Green using the liquid decolorization assay showed that both the individual cultures (<em>Bacillus vietnamensis, Planococcus maritimus and Bacillus pumilus</em>) and their consortium were able to decolorize more than 70% of dye within 24 h of incubation. This is the first report on diversity and extracellular hydrolytic enzymatic activities and bioremediation properties of bacteria from continental slope sediment of eastern Arabian Sea.</p></div>\",\"PeriodicalId\":53463,\"journal\":{\"name\":\"Journal of Genetic Engineering and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jgeb.2018.06.002\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetic Engineering and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687157X18300623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X18300623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Phylogenetic diversity and biotechnological potentials of marine bacteria from continental slope of eastern Arabian Sea
Marine environments are substantially untapped source for the isolation of bacteria with the capacity to produce various extracellular hydrolytic enzymes, which have important ecological roles and promising biotechnological applications. Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. A number of marine hydrolases have been described, including amylases, lipases and proteases, which are being used extensively for biotechnological applications. The present study was carried out to isolate marine bacteria from continental slope sediments of the eastern Arabian Sea and explore their biotechnological potential. Among the 119 isolates screened, producers of amylases (15%), caseinases (40%), cellulases (40%), gelatinases (60%), lipases (26%), ligninases (33%), phytase (11%) and Malachite Green dye degraders (16%) were detected. Phylogenetic analysis based on 16S rRNA gene sequencing showed that predominant marine sediment bacteria possessing more than four enzymatic activities belonged to the phyla Firmicutes and Proteobacteria, was assigned to the genera Bacillus, Planococcus, Staphylococcus, Chryseomicrobium, Exiguobacterium and Halomonas. Biodegradation of the dye Malachite Green using the liquid decolorization assay showed that both the individual cultures (Bacillus vietnamensis, Planococcus maritimus and Bacillus pumilus) and their consortium were able to decolorize more than 70% of dye within 24 h of incubation. This is the first report on diversity and extracellular hydrolytic enzymatic activities and bioremediation properties of bacteria from continental slope sediment of eastern Arabian Sea.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts