形式化人-机器人相互适应:一个有界记忆模型。

Stefanos Nikolaidis, Anton Kuznetsov, David Hsu, Siddhartha Srinivasa
{"title":"形式化人-机器人相互适应:一个有界记忆模型。","authors":"Stefanos Nikolaidis,&nbsp;Anton Kuznetsov,&nbsp;David Hsu,&nbsp;Siddhartha Srinivasa","doi":"10.1109/HRI.2016.7451736","DOIUrl":null,"url":null,"abstract":"<p><p>Mutual adaptation is critical for effective team collaboration. This paper presents a formalism for human-robot mutual adaptation in collaborative tasks. We propose the <i>bounded-memory adaptation model</i> (BAM), which captures human adaptive behaviors based on a bounded memory assumption. We integrate BAM into a partially observable stochastic model, which enables robot adaptation to the human. When the human is adaptive, the robot will guide the human towards a new, optimal collaborative strategy unknown to the human in advance. When the human is not willing to change their strategy, the robot adapts to the human in order to retain human trust. Human subject experiments indicate that the proposed formalism can significantly improve the effectiveness of human-robot teams, while human subject ratings on the robot performance and trust are comparable to those achieved by cross training, a state-of-the-art human-robot team training practice.</p>","PeriodicalId":92429,"journal":{"name":"Proceedings of the ... ACM SIGCHI. ACM Conference on Human-Robot Interaction","volume":"2016 ","pages":"75-82"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/HRI.2016.7451736","citationCount":"57","resultStr":"{\"title\":\"Formalizing Human-Robot Mutual Adaptation: A Bounded Memory Model.\",\"authors\":\"Stefanos Nikolaidis,&nbsp;Anton Kuznetsov,&nbsp;David Hsu,&nbsp;Siddhartha Srinivasa\",\"doi\":\"10.1109/HRI.2016.7451736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutual adaptation is critical for effective team collaboration. This paper presents a formalism for human-robot mutual adaptation in collaborative tasks. We propose the <i>bounded-memory adaptation model</i> (BAM), which captures human adaptive behaviors based on a bounded memory assumption. We integrate BAM into a partially observable stochastic model, which enables robot adaptation to the human. When the human is adaptive, the robot will guide the human towards a new, optimal collaborative strategy unknown to the human in advance. When the human is not willing to change their strategy, the robot adapts to the human in order to retain human trust. Human subject experiments indicate that the proposed formalism can significantly improve the effectiveness of human-robot teams, while human subject ratings on the robot performance and trust are comparable to those achieved by cross training, a state-of-the-art human-robot team training practice.</p>\",\"PeriodicalId\":92429,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGCHI. ACM Conference on Human-Robot Interaction\",\"volume\":\"2016 \",\"pages\":\"75-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/HRI.2016.7451736\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGCHI. ACM Conference on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HRI.2016.7451736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/4/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGCHI. ACM Conference on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HRI.2016.7451736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/4/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

相互适应对于有效的团队协作至关重要。提出了协作任务中人机相互适应的一种形式。我们提出了基于有限记忆假设的有限记忆适应模型(BAM),该模型捕捉了人类的适应行为。我们将BAM整合到一个部分可观察的随机模型中,使机器人能够适应人类。当人类具有自适应能力时,机器人将引导人类走向一种新的、最优的、人类事先不知道的协作策略。当人类不愿意改变自己的策略时,机器人会适应人类,以保持人类的信任。人类受试者实验表明,所提出的形式体系可以显著提高人机团队的有效性,而人类受试者对机器人表现和信任的评分与交叉训练(一种最先进的人机团队训练实践)所获得的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Formalizing Human-Robot Mutual Adaptation: A Bounded Memory Model.

Formalizing Human-Robot Mutual Adaptation: A Bounded Memory Model.

Formalizing Human-Robot Mutual Adaptation: A Bounded Memory Model.

Formalizing Human-Robot Mutual Adaptation: A Bounded Memory Model.

Mutual adaptation is critical for effective team collaboration. This paper presents a formalism for human-robot mutual adaptation in collaborative tasks. We propose the bounded-memory adaptation model (BAM), which captures human adaptive behaviors based on a bounded memory assumption. We integrate BAM into a partially observable stochastic model, which enables robot adaptation to the human. When the human is adaptive, the robot will guide the human towards a new, optimal collaborative strategy unknown to the human in advance. When the human is not willing to change their strategy, the robot adapts to the human in order to retain human trust. Human subject experiments indicate that the proposed formalism can significantly improve the effectiveness of human-robot teams, while human subject ratings on the robot performance and trust are comparable to those achieved by cross training, a state-of-the-art human-robot team training practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信