Bennett Ma, Gregg Wesolowski, Bin Luo, Traci Lifsted, Keith Wessner, Gary Adamson, Helmut Glantschnig, Laura S Lubbers
{"title":"滑膜液中组织蛋白酶K生物标志物的抑制是一个自由药物驱动的过程。","authors":"Bennett Ma, Gregg Wesolowski, Bin Luo, Traci Lifsted, Keith Wessner, Gary Adamson, Helmut Glantschnig, Laura S Lubbers","doi":"10.1177/1849454418821819","DOIUrl":null,"url":null,"abstract":"<p><p>Cathepsin K (CatK) inhibitors exhibited chondroprotective and pain-reducing effects in animal models, however, improvements were relatively modest at dose levels achieving maximal suppression of CatK biomarkers in urine. In this report, a previously characterized CatK inhibitor (MK-1256) is utilized to explore the potential of reduced target engagement and/or suboptimal exposure (free drug) as limiting factors to the pharmacological potential of CatK inhibitors in the knee joint. Following oral administration of MK-1256 at a dose level achieving maximal inhibition of urinary biomarker (helical peptide) in dogs, full suppression of the biomarker in synovial fluid was observed. Subsequent tissue distribution studies conducted in dogs and rabbits revealed that MK-1256 levels in synovial fluid and cartilage were consistent with the free-drug hypothesis. Reasonable projection (within twofold) of drug levels in these tissues can be made based on plasma drug concentration with adjustments for binding factors. These results indicate that the previously observed efficacies in the animal models were not limited by compound distribution or target engagement in the knee tissues.</p>","PeriodicalId":37524,"journal":{"name":"Journal of Circulating Biomarkers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1849454418821819","citationCount":"1","resultStr":"{\"title\":\"Suppression of cathepsin K biomarker in synovial fluid as a free-drug-driven process.\",\"authors\":\"Bennett Ma, Gregg Wesolowski, Bin Luo, Traci Lifsted, Keith Wessner, Gary Adamson, Helmut Glantschnig, Laura S Lubbers\",\"doi\":\"10.1177/1849454418821819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cathepsin K (CatK) inhibitors exhibited chondroprotective and pain-reducing effects in animal models, however, improvements were relatively modest at dose levels achieving maximal suppression of CatK biomarkers in urine. In this report, a previously characterized CatK inhibitor (MK-1256) is utilized to explore the potential of reduced target engagement and/or suboptimal exposure (free drug) as limiting factors to the pharmacological potential of CatK inhibitors in the knee joint. Following oral administration of MK-1256 at a dose level achieving maximal inhibition of urinary biomarker (helical peptide) in dogs, full suppression of the biomarker in synovial fluid was observed. Subsequent tissue distribution studies conducted in dogs and rabbits revealed that MK-1256 levels in synovial fluid and cartilage were consistent with the free-drug hypothesis. Reasonable projection (within twofold) of drug levels in these tissues can be made based on plasma drug concentration with adjustments for binding factors. These results indicate that the previously observed efficacies in the animal models were not limited by compound distribution or target engagement in the knee tissues.</p>\",\"PeriodicalId\":37524,\"journal\":{\"name\":\"Journal of Circulating Biomarkers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1849454418821819\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circulating Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1849454418821819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circulating Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1849454418821819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Suppression of cathepsin K biomarker in synovial fluid as a free-drug-driven process.
Cathepsin K (CatK) inhibitors exhibited chondroprotective and pain-reducing effects in animal models, however, improvements were relatively modest at dose levels achieving maximal suppression of CatK biomarkers in urine. In this report, a previously characterized CatK inhibitor (MK-1256) is utilized to explore the potential of reduced target engagement and/or suboptimal exposure (free drug) as limiting factors to the pharmacological potential of CatK inhibitors in the knee joint. Following oral administration of MK-1256 at a dose level achieving maximal inhibition of urinary biomarker (helical peptide) in dogs, full suppression of the biomarker in synovial fluid was observed. Subsequent tissue distribution studies conducted in dogs and rabbits revealed that MK-1256 levels in synovial fluid and cartilage were consistent with the free-drug hypothesis. Reasonable projection (within twofold) of drug levels in these tissues can be made based on plasma drug concentration with adjustments for binding factors. These results indicate that the previously observed efficacies in the animal models were not limited by compound distribution or target engagement in the knee tissues.
期刊介绍:
Journal of Circulating Biomarkers is an international, peer-reviewed, open access scientific journal focusing on all aspects of the rapidly growing field of circulating blood-based biomarkers and diagnostics using circulating protein and lipid markers, circulating tumor cells (CTC), circulating cell-free DNA (cfDNA) and extracellular vesicles, including exosomes, microvesicles, microparticles, ectosomes and apoptotic bodies. The journal publishes high-impact articles that deal with all fields related to circulating biomarkers and diagnostics, ranging from basic science to translational and clinical applications. Papers from a wide variety of disciplines are welcome; interdisciplinary studies are especially suitable for this journal. Included within the scope are a broad array of specialties including (but not limited to) cancer, immunology, neurology, metabolic diseases, cardiovascular medicine, regenerative medicine, nosology, physiology, pathology, technological applications in diagnostics, therapeutics, vaccine, drug delivery, regenerative medicine, drug development and clinical trials. The journal also hosts reviews, perspectives and news on specific topics.