通过多糖分析了解多能性和细胞衰老。

IF 1.1 Q4 CELL & TISSUE ENGINEERING
Journal of Stem Cells & Regenerative Medicine Pub Date : 2018-12-30 eCollection Date: 2018-01-01
Hirabayashi Jun
{"title":"通过多糖分析了解多能性和细胞衰老。","authors":"Hirabayashi Jun","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>All kinds of cells from all kinds of organisms (i.e., animals, plants, fungi and bacteria) are covered by a dense layer of glycans. The origin of glycans or carbohydrates is not known<sup>[1]</sup>, however, the above fact implies that they are widely and closely associated with various biological phenomena based on cellular communications, which include development, differentiation, morphogenesis, carcinogenesis, immunity and infection. It is also notable that glycoproteins, one of existing forms of glycans (i.e., glycoconjugates) are generally synthesized in lumen sites of endoplasmic reticulum and the following Golgi apparatus, distinct from cytoplasmic proteins, which are not subjected to glycosylation, a major event of posttranslational modifications. In fact, glycan structures largely depend on a series of (e.g., >200 in human) glycol-genes, which are defined as genes involved in glycan synthesis (e.g., glycosyltransferases, sulfotransferases, nucleotide sugar transporters), of which expressions differ under different conditions. Because expression of each glycol-gene differs in different cell types (e.g., biological origin, tissue) and states (e.g., developmental stage, malignancy), glycans can be a good marker for cell typing (e.g., SSEA-1) and serum diagnosis (e.g., cancer biomarker such as CA19-9). However, glycan preparation as well as its analysis and total understanding are much more difficult compared with other major disciplines like genomics and proteomics. As a result, most of nonglycoscientists tend to hesitate glycomics, i.e., \"glycophobia\". Nevertheless, glycoscience is a very important field of life science, particularly in the future, without which many remaining issues will not be solved. In this plenary lecture, a novel approach to glycan profiling<sup>[2]</sup> and its applications to biomarker investigation and regenerative medicine<sup>[3]</sup> will be described.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339976/pdf/","citationCount":"0","resultStr":"{\"title\":\"An insight into pluripotency and cellular aging through glycan analysis.\",\"authors\":\"Hirabayashi Jun\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All kinds of cells from all kinds of organisms (i.e., animals, plants, fungi and bacteria) are covered by a dense layer of glycans. The origin of glycans or carbohydrates is not known<sup>[1]</sup>, however, the above fact implies that they are widely and closely associated with various biological phenomena based on cellular communications, which include development, differentiation, morphogenesis, carcinogenesis, immunity and infection. It is also notable that glycoproteins, one of existing forms of glycans (i.e., glycoconjugates) are generally synthesized in lumen sites of endoplasmic reticulum and the following Golgi apparatus, distinct from cytoplasmic proteins, which are not subjected to glycosylation, a major event of posttranslational modifications. In fact, glycan structures largely depend on a series of (e.g., >200 in human) glycol-genes, which are defined as genes involved in glycan synthesis (e.g., glycosyltransferases, sulfotransferases, nucleotide sugar transporters), of which expressions differ under different conditions. Because expression of each glycol-gene differs in different cell types (e.g., biological origin, tissue) and states (e.g., developmental stage, malignancy), glycans can be a good marker for cell typing (e.g., SSEA-1) and serum diagnosis (e.g., cancer biomarker such as CA19-9). However, glycan preparation as well as its analysis and total understanding are much more difficult compared with other major disciplines like genomics and proteomics. As a result, most of nonglycoscientists tend to hesitate glycomics, i.e., \\\"glycophobia\\\". Nevertheless, glycoscience is a very important field of life science, particularly in the future, without which many remaining issues will not be solved. In this plenary lecture, a novel approach to glycan profiling<sup>[2]</sup> and its applications to biomarker investigation and regenerative medicine<sup>[3]</sup> will be described.</p>\",\"PeriodicalId\":17155,\"journal\":{\"name\":\"Journal of Stem Cells & Regenerative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339976/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stem Cells & Regenerative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells & Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

来自各种生物体(即动物、植物、真菌和细菌)的各种细胞都被一层致密的聚糖覆盖。聚糖或碳水化合物的来源尚不清楚[1],但上述事实表明,它们与基于细胞通讯的各种生物现象广泛而密切地相关,包括发育、分化、形态发生、致癌、免疫和感染。同样值得注意的是,糖蛋白是现有的聚糖形式之一(即糖缀合物),通常在内质网的管腔部位和下面的高尔基体中合成,与细胞质蛋白不同,后者不受糖基化的影响,这是翻译后修饰的主要事件。事实上,多糖的结构在很大程度上取决于一系列(例如,在人类中超过200个)糖基基因,这些基因被定义为参与多糖合成的基因(如糖基转移酶、硫基转移酶、核苷酸糖转运蛋白),它们在不同条件下的表达不同。由于每个糖基基因的表达在不同的细胞类型(如生物起源、组织)和状态(如发育阶段、恶性)中是不同的,因此聚糖可以作为细胞分型(如SSEA-1)和血清诊断(如癌症生物标志物如CA19-9)的良好标记物。然而,与基因组学和蛋白质组学等其他主要学科相比,聚糖的制备及其分析和全面理解要困难得多。因此,大多数非糖科学家倾向于对糖组学犹豫不决,即“糖恐惧症”。然而,糖科学是生命科学的一个非常重要的领域,特别是在未来,没有它,许多遗留问题将无法解决。在本次全体会议上,我们将介绍一种新的聚糖谱分析方法[2]及其在生物标志物研究和再生医学[3]中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An insight into pluripotency and cellular aging through glycan analysis.

All kinds of cells from all kinds of organisms (i.e., animals, plants, fungi and bacteria) are covered by a dense layer of glycans. The origin of glycans or carbohydrates is not known[1], however, the above fact implies that they are widely and closely associated with various biological phenomena based on cellular communications, which include development, differentiation, morphogenesis, carcinogenesis, immunity and infection. It is also notable that glycoproteins, one of existing forms of glycans (i.e., glycoconjugates) are generally synthesized in lumen sites of endoplasmic reticulum and the following Golgi apparatus, distinct from cytoplasmic proteins, which are not subjected to glycosylation, a major event of posttranslational modifications. In fact, glycan structures largely depend on a series of (e.g., >200 in human) glycol-genes, which are defined as genes involved in glycan synthesis (e.g., glycosyltransferases, sulfotransferases, nucleotide sugar transporters), of which expressions differ under different conditions. Because expression of each glycol-gene differs in different cell types (e.g., biological origin, tissue) and states (e.g., developmental stage, malignancy), glycans can be a good marker for cell typing (e.g., SSEA-1) and serum diagnosis (e.g., cancer biomarker such as CA19-9). However, glycan preparation as well as its analysis and total understanding are much more difficult compared with other major disciplines like genomics and proteomics. As a result, most of nonglycoscientists tend to hesitate glycomics, i.e., "glycophobia". Nevertheless, glycoscience is a very important field of life science, particularly in the future, without which many remaining issues will not be solved. In this plenary lecture, a novel approach to glycan profiling[2] and its applications to biomarker investigation and regenerative medicine[3] will be described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
5
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信