Lujain A Almousa, Andrew M Salter, Simon C Langley-Evans
{"title":"缺镁可增加脂多糖诱导的炎症,增强人脐静脉内皮细胞单核细胞粘附。","authors":"Lujain A Almousa, Andrew M Salter, Simon C Langley-Evans","doi":"10.1684/mrh.2018.0436","DOIUrl":null,"url":null,"abstract":"<p><p>Given a possible anti-inflammatory role of magnesium in endothelial cells, the aim of this study was to investigate the effects of magnesium on human umbilical vein endothelial cell (HUVEC) viability, gene expression, and the pro-inflammatory response caused by a bacterial endotoxin (LPS). HUVECs were cultured at three different concentrations of magnesium sulphate (0.1 mM; control-1 mM; 5 mM) for 72 hours. Exposing the cells to LPS reduced cell viability in culture with low magnesium, but high magnesium protected the HUVECs from LPS-induced cell death. LPS-treated HUVECs cultured in low magnesium showed up-regulation of mRNA expression for pro-inflammatory factors and the expression of cytokine proteins, including IL-2, IL-3, IL-8, IL-15 and MCP-1. This was associated with greater adhesion of monocytes to the cells. In contrast, high magnesium decreased the expression of inflammatory factors and cytokines. The study found that LPS activation of the expression of many pro-inflammatory factors is exacerbated in the presence of low magnesium concentration whilst a high magnesium concentration partly inhibited the inflammatory response to LPS.</p>","PeriodicalId":18159,"journal":{"name":"Magnesium research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/mrh.2018.0436","citationCount":"10","resultStr":"{\"title\":\"Magnesium deficiency heightens lipopolysaccharide-induced inflammation and enhances monocyte adhesion in human umbilical vein endothelial cells.\",\"authors\":\"Lujain A Almousa, Andrew M Salter, Simon C Langley-Evans\",\"doi\":\"10.1684/mrh.2018.0436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given a possible anti-inflammatory role of magnesium in endothelial cells, the aim of this study was to investigate the effects of magnesium on human umbilical vein endothelial cell (HUVEC) viability, gene expression, and the pro-inflammatory response caused by a bacterial endotoxin (LPS). HUVECs were cultured at three different concentrations of magnesium sulphate (0.1 mM; control-1 mM; 5 mM) for 72 hours. Exposing the cells to LPS reduced cell viability in culture with low magnesium, but high magnesium protected the HUVECs from LPS-induced cell death. LPS-treated HUVECs cultured in low magnesium showed up-regulation of mRNA expression for pro-inflammatory factors and the expression of cytokine proteins, including IL-2, IL-3, IL-8, IL-15 and MCP-1. This was associated with greater adhesion of monocytes to the cells. In contrast, high magnesium decreased the expression of inflammatory factors and cytokines. The study found that LPS activation of the expression of many pro-inflammatory factors is exacerbated in the presence of low magnesium concentration whilst a high magnesium concentration partly inhibited the inflammatory response to LPS.</p>\",\"PeriodicalId\":18159,\"journal\":{\"name\":\"Magnesium research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1684/mrh.2018.0436\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnesium research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/mrh.2018.0436\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnesium research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/mrh.2018.0436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Magnesium deficiency heightens lipopolysaccharide-induced inflammation and enhances monocyte adhesion in human umbilical vein endothelial cells.
Given a possible anti-inflammatory role of magnesium in endothelial cells, the aim of this study was to investigate the effects of magnesium on human umbilical vein endothelial cell (HUVEC) viability, gene expression, and the pro-inflammatory response caused by a bacterial endotoxin (LPS). HUVECs were cultured at three different concentrations of magnesium sulphate (0.1 mM; control-1 mM; 5 mM) for 72 hours. Exposing the cells to LPS reduced cell viability in culture with low magnesium, but high magnesium protected the HUVECs from LPS-induced cell death. LPS-treated HUVECs cultured in low magnesium showed up-regulation of mRNA expression for pro-inflammatory factors and the expression of cytokine proteins, including IL-2, IL-3, IL-8, IL-15 and MCP-1. This was associated with greater adhesion of monocytes to the cells. In contrast, high magnesium decreased the expression of inflammatory factors and cytokines. The study found that LPS activation of the expression of many pro-inflammatory factors is exacerbated in the presence of low magnesium concentration whilst a high magnesium concentration partly inhibited the inflammatory response to LPS.
期刊介绍:
Magnesium Research, the official journal of the international Society for the Development of Research on Magnesium (SDRM), has been the benchmark journal on the use of magnesium in biomedicine for more than 30 years.
This quarterly publication provides regular updates on multinational and multidisciplinary research into magnesium, bringing together original experimental and clinical articles, correspondence, Letters to the Editor, comments on latest news, general features, summaries of relevant articles from other journals, and reports and statements from national and international conferences and symposiums.
Indexed in the leading medical databases, Magnesium Research is an essential journal for specialists and general practitioners, for basic and clinical researchers, for practising doctors and academics.