精神病的贝叶斯解释:缺乏悔恨和自我强化的模型。

Aaron Prosser, Karl J Friston, Nathan Bakker, Thomas Parr
{"title":"精神病的贝叶斯解释:缺乏悔恨和自我强化的模型。","authors":"Aaron Prosser, Karl J Friston, Nathan Bakker, Thomas Parr","doi":"10.1162/cpsy_a_00016","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes a formal model that integrates cognitive and psychodynamic psychotherapeutic models of psychopathy to show how two major psychopathic traits called <i>lacks remorse</i> and <i>self-aggrandizing</i> can be understood as a form of abnormal Bayesian inference about the self. This model draws on the predictive coding (i.e., active inference) framework, a neurobiologically plausible explanatory framework for message passing in the brain that is formalized in terms of hierarchical Bayesian inference. In summary, this model proposes that these two cardinal psychopathic traits reflect entrenched maladaptive Bayesian inferences about the self, which defend against the experience of deep-seated, self-related negative emotions, specifically shame and worthlessness. Support for the model in extant research on the neurobiology of psychopathy and quantitative simulations are provided. Finally, we offer a preliminary overview of a novel treatment for psychopathy that rests on our Bayesian formulation.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":" ","pages":"92-140"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184370/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Account of Psychopathy: A Model of Lacks Remorse and Self-Aggrandizing.\",\"authors\":\"Aaron Prosser, Karl J Friston, Nathan Bakker, Thomas Parr\",\"doi\":\"10.1162/cpsy_a_00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article proposes a formal model that integrates cognitive and psychodynamic psychotherapeutic models of psychopathy to show how two major psychopathic traits called <i>lacks remorse</i> and <i>self-aggrandizing</i> can be understood as a form of abnormal Bayesian inference about the self. This model draws on the predictive coding (i.e., active inference) framework, a neurobiologically plausible explanatory framework for message passing in the brain that is formalized in terms of hierarchical Bayesian inference. In summary, this model proposes that these two cardinal psychopathic traits reflect entrenched maladaptive Bayesian inferences about the self, which defend against the experience of deep-seated, self-related negative emotions, specifically shame and worthlessness. Support for the model in extant research on the neurobiology of psychopathy and quantitative simulations are provided. Finally, we offer a preliminary overview of a novel treatment for psychopathy that rests on our Bayesian formulation.</p>\",\"PeriodicalId\":72664,\"journal\":{\"name\":\"Computational psychiatry (Cambridge, Mass.)\",\"volume\":\" \",\"pages\":\"92-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational psychiatry (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/cpsy_a_00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational psychiatry (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/cpsy_a_00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个形式模型,该模型结合了精神病的认知和心理动力学心理治疗模型,以表明两个主要的精神病特征,即缺乏悔恨和自我夸大,可以被理解为对自我的一种异常贝叶斯推断。该模型借鉴了预测编码(即主动推理)框架,这是一种用于大脑中信息传递的神经生物学上合理的解释框架,根据分层贝叶斯推理进行形式化。总之,该模型提出,这两个主要的精神病特征反映了对自我根深蒂固的不适应贝叶斯推断,这些推断可以抵御深层次的、与自我相关的负面情绪,特别是羞耻感和无价值感。该模型在现存的精神病神经生物学研究和定量模拟中得到了支持。最后,我们对一种基于贝叶斯公式的新型精神病治疗方法进行了初步概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Bayesian Account of Psychopathy: A Model of Lacks Remorse and Self-Aggrandizing.

A Bayesian Account of Psychopathy: A Model of Lacks Remorse and Self-Aggrandizing.

A Bayesian Account of Psychopathy: A Model of Lacks Remorse and Self-Aggrandizing.

A Bayesian Account of Psychopathy: A Model of Lacks Remorse and Self-Aggrandizing.

This article proposes a formal model that integrates cognitive and psychodynamic psychotherapeutic models of psychopathy to show how two major psychopathic traits called lacks remorse and self-aggrandizing can be understood as a form of abnormal Bayesian inference about the self. This model draws on the predictive coding (i.e., active inference) framework, a neurobiologically plausible explanatory framework for message passing in the brain that is formalized in terms of hierarchical Bayesian inference. In summary, this model proposes that these two cardinal psychopathic traits reflect entrenched maladaptive Bayesian inferences about the self, which defend against the experience of deep-seated, self-related negative emotions, specifically shame and worthlessness. Support for the model in extant research on the neurobiology of psychopathy and quantitative simulations are provided. Finally, we offer a preliminary overview of a novel treatment for psychopathy that rests on our Bayesian formulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信