{"title":"粘蛋白及其在塑造粘液屏障功能方面的作用。","authors":"C E Wagner, K M Wheeler, K Ribbeck","doi":"10.1146/annurev-cellbio-100617-062818","DOIUrl":null,"url":null,"abstract":"<p><p>We review what is currently understood about how the structure of the primary solid component of mucus, the glycoprotein mucin, gives rise to the mechanical and biochemical properties of mucus that are required for it to perform its diverse physiological roles. Macroscale processes such as lubrication require mucus of a certain stiffness and spinnability, which are set by structural features of the mucin network, including the identity and density of cross-links and the degree of glycosylation. At the microscale, these same features affect the mechanical environment experienced by small particles and play a crucial role in establishing an interaction-based filter. Finally, mucin glycans are critical for regulating microbial interactions, serving as receptor binding sites for adhesion, as nutrient sources, and as environmental signals. We conclude by discussing how these structural principles can be used in the design of synthetic mucin-mimetic materials and provide suggestions for directions of future work in this field.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"34 ","pages":"189-215"},"PeriodicalIF":11.4000,"publicationDate":"2018-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mucins and Their Role in Shaping the Functions of Mucus Barriers.\",\"authors\":\"C E Wagner, K M Wheeler, K Ribbeck\",\"doi\":\"10.1146/annurev-cellbio-100617-062818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We review what is currently understood about how the structure of the primary solid component of mucus, the glycoprotein mucin, gives rise to the mechanical and biochemical properties of mucus that are required for it to perform its diverse physiological roles. Macroscale processes such as lubrication require mucus of a certain stiffness and spinnability, which are set by structural features of the mucin network, including the identity and density of cross-links and the degree of glycosylation. At the microscale, these same features affect the mechanical environment experienced by small particles and play a crucial role in establishing an interaction-based filter. Finally, mucin glycans are critical for regulating microbial interactions, serving as receptor binding sites for adhesion, as nutrient sources, and as environmental signals. We conclude by discussing how these structural principles can be used in the design of synthetic mucin-mimetic materials and provide suggestions for directions of future work in this field.</p>\",\"PeriodicalId\":7944,\"journal\":{\"name\":\"Annual review of cell and developmental biology\",\"volume\":\"34 \",\"pages\":\"189-215\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2018-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of cell and developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cellbio-100617-062818\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-100617-062818","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Mucins and Their Role in Shaping the Functions of Mucus Barriers.
We review what is currently understood about how the structure of the primary solid component of mucus, the glycoprotein mucin, gives rise to the mechanical and biochemical properties of mucus that are required for it to perform its diverse physiological roles. Macroscale processes such as lubrication require mucus of a certain stiffness and spinnability, which are set by structural features of the mucin network, including the identity and density of cross-links and the degree of glycosylation. At the microscale, these same features affect the mechanical environment experienced by small particles and play a crucial role in establishing an interaction-based filter. Finally, mucin glycans are critical for regulating microbial interactions, serving as receptor binding sites for adhesion, as nutrient sources, and as environmental signals. We conclude by discussing how these structural principles can be used in the design of synthetic mucin-mimetic materials and provide suggestions for directions of future work in this field.
期刊介绍:
The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.