Berta Canal, Alba Duch, Francesc Posas, Eulàlia de Nadal
{"title":"一种防止转录复制冲突的新机制。","authors":"Berta Canal, Alba Duch, Francesc Posas, Eulàlia de Nadal","doi":"10.1080/23723556.2018.1451233","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription and replication complexes can coincide in space and time. Such coincidences may result in collisions that trigger genomic instability. The phosphorylation of Mrc1 by different signaling kinases is part of a general mechanism that serves to delay replication in response to different stresses that trigger a massive transcriptional response in S phase. This mechanism prevents Transcription-Replication Conflicts and maintains genomic integrity in response to unscheduled massive transcription during S phase.</p>","PeriodicalId":520710,"journal":{"name":"Molecular & cellular oncology","volume":" ","pages":"e1451233"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23723556.2018.1451233","citationCount":"2","resultStr":"{\"title\":\"A novel mechanism for the prevention of transcription replication conflicts.\",\"authors\":\"Berta Canal, Alba Duch, Francesc Posas, Eulàlia de Nadal\",\"doi\":\"10.1080/23723556.2018.1451233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcription and replication complexes can coincide in space and time. Such coincidences may result in collisions that trigger genomic instability. The phosphorylation of Mrc1 by different signaling kinases is part of a general mechanism that serves to delay replication in response to different stresses that trigger a massive transcriptional response in S phase. This mechanism prevents Transcription-Replication Conflicts and maintains genomic integrity in response to unscheduled massive transcription during S phase.</p>\",\"PeriodicalId\":520710,\"journal\":{\"name\":\"Molecular & cellular oncology\",\"volume\":\" \",\"pages\":\"e1451233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23723556.2018.1451233\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & cellular oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23723556.2018.1451233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & cellular oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23723556.2018.1451233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
A novel mechanism for the prevention of transcription replication conflicts.
Transcription and replication complexes can coincide in space and time. Such coincidences may result in collisions that trigger genomic instability. The phosphorylation of Mrc1 by different signaling kinases is part of a general mechanism that serves to delay replication in response to different stresses that trigger a massive transcriptional response in S phase. This mechanism prevents Transcription-Replication Conflicts and maintains genomic integrity in response to unscheduled massive transcription during S phase.