{"title":"纳米技术载体治疗痤疮。","authors":"Shivani Verma, Puneet Utreja, Lalit Kumar","doi":"10.2174/1574891X13666180918114349","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acne is a multifactorial skin disease associated with pilosebaceous unit and caused by bacteria Propionibacterium acnes and Acne vulgaris. Near about 95% people throughout the world suffer from acne at some point in their life span. This disease is more prominent in adults compared to neonates and prepubescent children. Conventionally it is treated with either creams or gels having large number of side effects on patients.</p><p><strong>Methods: </strong>We searched about recent advancements in the use of nanotechnological carriers for effective treatment of acne. We focused on the use of liposomes, niosomes, microemulsions, microsponge, microspheres, and nanoparticles to improve anti-acne therapy. Patents regarding use of nanocarrier systems to eliminate acne were also discussed in this review.</p><p><strong>Results: </strong>The encapsulation of anti-acne drugs in various nanotechnological carriers improve their efficacy and reduce side effects. These carriers show controlled drug release and improved drug penetration even upto pilosebaceous unit of skin. Local tolerability of anti-acne molecules can be improved by adjusting the concentration in nanotechnological carriers.</p><p><strong>Conclusions: </strong>Nanotechnological carriers have opened a new window to design novel, effective and low dose systems for effective eradication acne disease. However, very few nanocarrier based formulations are available in market for topical use and much progress is required in this field to improve anti-acne therapy.</p>","PeriodicalId":20909,"journal":{"name":"Recent patents on anti-infective drug discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Nanotechnological Carriers for Treatment of Acne.\",\"authors\":\"Shivani Verma, Puneet Utreja, Lalit Kumar\",\"doi\":\"10.2174/1574891X13666180918114349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acne is a multifactorial skin disease associated with pilosebaceous unit and caused by bacteria Propionibacterium acnes and Acne vulgaris. Near about 95% people throughout the world suffer from acne at some point in their life span. This disease is more prominent in adults compared to neonates and prepubescent children. Conventionally it is treated with either creams or gels having large number of side effects on patients.</p><p><strong>Methods: </strong>We searched about recent advancements in the use of nanotechnological carriers for effective treatment of acne. We focused on the use of liposomes, niosomes, microemulsions, microsponge, microspheres, and nanoparticles to improve anti-acne therapy. Patents regarding use of nanocarrier systems to eliminate acne were also discussed in this review.</p><p><strong>Results: </strong>The encapsulation of anti-acne drugs in various nanotechnological carriers improve their efficacy and reduce side effects. These carriers show controlled drug release and improved drug penetration even upto pilosebaceous unit of skin. Local tolerability of anti-acne molecules can be improved by adjusting the concentration in nanotechnological carriers.</p><p><strong>Conclusions: </strong>Nanotechnological carriers have opened a new window to design novel, effective and low dose systems for effective eradication acne disease. However, very few nanocarrier based formulations are available in market for topical use and much progress is required in this field to improve anti-acne therapy.</p>\",\"PeriodicalId\":20909,\"journal\":{\"name\":\"Recent patents on anti-infective drug discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on anti-infective drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1574891X13666180918114349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-infective drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574891X13666180918114349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Background: Acne is a multifactorial skin disease associated with pilosebaceous unit and caused by bacteria Propionibacterium acnes and Acne vulgaris. Near about 95% people throughout the world suffer from acne at some point in their life span. This disease is more prominent in adults compared to neonates and prepubescent children. Conventionally it is treated with either creams or gels having large number of side effects on patients.
Methods: We searched about recent advancements in the use of nanotechnological carriers for effective treatment of acne. We focused on the use of liposomes, niosomes, microemulsions, microsponge, microspheres, and nanoparticles to improve anti-acne therapy. Patents regarding use of nanocarrier systems to eliminate acne were also discussed in this review.
Results: The encapsulation of anti-acne drugs in various nanotechnological carriers improve their efficacy and reduce side effects. These carriers show controlled drug release and improved drug penetration even upto pilosebaceous unit of skin. Local tolerability of anti-acne molecules can be improved by adjusting the concentration in nanotechnological carriers.
Conclusions: Nanotechnological carriers have opened a new window to design novel, effective and low dose systems for effective eradication acne disease. However, very few nanocarrier based formulations are available in market for topical use and much progress is required in this field to improve anti-acne therapy.
期刊介绍:
Recent Patents on Anti-Infective Drug Discovery publishes review articles on recent patents in the field of anti-infective drug discovery e.g. novel bioactive compounds, analogs & targets. A selection of important and recent patents on anti-infective drug discovery is also included in the journal. The journal is essential reading for all researchers involved in anti-infective drug design and discovery.