轮廓的形状:计算和表示。

IF 5 2区 医学 Q1 NEUROSCIENCES
James H Elder
{"title":"轮廓的形状:计算和表示。","authors":"James H Elder","doi":"10.1146/annurev-vision-091517-034110","DOIUrl":null,"url":null,"abstract":"<p><p>The human visual system reliably extracts shape information from complex natural scenes in spite of noise and fragmentation caused by clutter and occlusions. A fast, feedforward sweep through ventral stream involving mechanisms tuned for orientation, curvature, and local Gestalt principles produces partial shape representations sufficient for simpler discriminative tasks. More complete shape representations may involve recurrent processes that integrate local and global cues. While feedforward discriminative deep neural network models currently produce the best predictions of object selectivity in higher areas of the object pathway, a generative model may be required to account for all aspects of shape perception. Research suggests that a successful model will account for our acute sensitivity to four key perceptual dimensions of shape: topology, symmetry, composition, and deformation.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"4 ","pages":"423-450"},"PeriodicalIF":5.0000,"publicationDate":"2018-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-vision-091517-034110","citationCount":"34","resultStr":"{\"title\":\"Shape from Contour: Computation and Representation.\",\"authors\":\"James H Elder\",\"doi\":\"10.1146/annurev-vision-091517-034110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human visual system reliably extracts shape information from complex natural scenes in spite of noise and fragmentation caused by clutter and occlusions. A fast, feedforward sweep through ventral stream involving mechanisms tuned for orientation, curvature, and local Gestalt principles produces partial shape representations sufficient for simpler discriminative tasks. More complete shape representations may involve recurrent processes that integrate local and global cues. While feedforward discriminative deep neural network models currently produce the best predictions of object selectivity in higher areas of the object pathway, a generative model may be required to account for all aspects of shape perception. Research suggests that a successful model will account for our acute sensitivity to four key perceptual dimensions of shape: topology, symmetry, composition, and deformation.</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\"4 \",\"pages\":\"423-450\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2018-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-vision-091517-034110\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-091517-034110\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-091517-034110","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 34

摘要

人类视觉系统可以从复杂的自然场景中可靠地提取形状信息,而不受杂波和遮挡引起的噪声和碎片的影响。通过腹侧流的快速前馈扫描,涉及定向、曲率和局部格式塔原则的机制,产生了足以用于简单判别任务的部分形状表征。更完整的形状表征可能涉及整合局部和全局线索的循环过程。虽然前馈判别深度神经网络模型目前在物体路径的较高区域产生物体选择性的最佳预测,但可能需要一个生成模型来解释形状感知的所有方面。研究表明,一个成功的模型将解释我们对形状的四个关键感知维度的敏锐敏感性:拓扑、对称、组成和变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape from Contour: Computation and Representation.

The human visual system reliably extracts shape information from complex natural scenes in spite of noise and fragmentation caused by clutter and occlusions. A fast, feedforward sweep through ventral stream involving mechanisms tuned for orientation, curvature, and local Gestalt principles produces partial shape representations sufficient for simpler discriminative tasks. More complete shape representations may involve recurrent processes that integrate local and global cues. While feedforward discriminative deep neural network models currently produce the best predictions of object selectivity in higher areas of the object pathway, a generative model may be required to account for all aspects of shape perception. Research suggests that a successful model will account for our acute sensitivity to four key perceptual dimensions of shape: topology, symmetry, composition, and deformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Vision Science
Annual Review of Vision Science Medicine-Ophthalmology
CiteScore
11.10
自引率
1.70%
发文量
19
期刊介绍: The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信