Manuel Miranda-Anaya, Dalia Luna-Moreno, Agustín Carmona-Castro, Mauricio Díaz-Muñoz
{"title":"瘦型和肥胖型火山小鼠昼夜运动活动光诱导的差异。","authors":"Manuel Miranda-Anaya, Dalia Luna-Moreno, Agustín Carmona-Castro, Mauricio Díaz-Muñoz","doi":"10.5334/jcr.145","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse <i>Neotomodon alstoni</i> is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity. We report differences in the free running circadian locomotor activity rhythm and in the effects of light pulses between lean and obese mice. Also, the photo-induced expression of the c-Fos protein and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN) were examined at circadian time (CT) 14 and 22. We show that obese mice have a larger dispersion of the period of circadian locomotor rhythm in constant darkness. Photic induced phase shifts are nearly 50% shorter at CT 14, and 50% larger at CT 22 than in lean mice. The photoinduction of VIP in the SCN at CT 22 was larger in obese mice, which may be related to the differences observed in photic phase shifting. Our work indicates that the obesity in <i>Neotomodon</i> has effects on the neural mechanisms that regulate the circadian system.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"15 ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356206/pdf/","citationCount":"14","resultStr":"{\"title\":\"Differences in Photic Entrainment of Circadian Locomotor Activity Between Lean and Obese Volcano Mice (<i>Neotomodon alstoni</i>).\",\"authors\":\"Manuel Miranda-Anaya, Dalia Luna-Moreno, Agustín Carmona-Castro, Mauricio Díaz-Muñoz\",\"doi\":\"10.5334/jcr.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse <i>Neotomodon alstoni</i> is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity. We report differences in the free running circadian locomotor activity rhythm and in the effects of light pulses between lean and obese mice. Also, the photo-induced expression of the c-Fos protein and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN) were examined at circadian time (CT) 14 and 22. We show that obese mice have a larger dispersion of the period of circadian locomotor rhythm in constant darkness. Photic induced phase shifts are nearly 50% shorter at CT 14, and 50% larger at CT 22 than in lean mice. The photoinduction of VIP in the SCN at CT 22 was larger in obese mice, which may be related to the differences observed in photic phase shifting. Our work indicates that the obesity in <i>Neotomodon</i> has effects on the neural mechanisms that regulate the circadian system.</p>\",\"PeriodicalId\":15461,\"journal\":{\"name\":\"Journal of Circadian Rhythms\",\"volume\":\"15 \",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356206/pdf/\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jcr.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jcr.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Differences in Photic Entrainment of Circadian Locomotor Activity Between Lean and Obese Volcano Mice (Neotomodon alstoni).
Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse Neotomodon alstoni is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity. We report differences in the free running circadian locomotor activity rhythm and in the effects of light pulses between lean and obese mice. Also, the photo-induced expression of the c-Fos protein and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN) were examined at circadian time (CT) 14 and 22. We show that obese mice have a larger dispersion of the period of circadian locomotor rhythm in constant darkness. Photic induced phase shifts are nearly 50% shorter at CT 14, and 50% larger at CT 22 than in lean mice. The photoinduction of VIP in the SCN at CT 22 was larger in obese mice, which may be related to the differences observed in photic phase shifting. Our work indicates that the obesity in Neotomodon has effects on the neural mechanisms that regulate the circadian system.
期刊介绍:
Journal of Circadian Rhythms is an Open Access, peer-reviewed online journal that publishes research articles dealing with circadian and nycthemeral (daily) rhythms in living organisms, including processes associated with photoperiodism and daily torpor. Journal of Circadian Rhythms aims to include both basic and applied research at any level of biological organization (molecular, cellular, organic, organismal, and populational). Studies of daily rhythms in environmental factors that directly affect circadian rhythms are also pertinent to the journal"s mission.