{"title":"干扰素γ在造血干细胞发育、体内平衡和疾病中的作用。","authors":"Daniel E Morales-Mantilla, Katherine Y King","doi":"10.1007/s40778-018-0139-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Interferon-gamma (IFN-γ) is a pro-inflammatory cytokine that participates in the regulation of hematopoietic stem cells (HSC) during development and under homeostatic conditions. IFN-γ also plays a key pathogenic role in several diseases that affect hematopoiesis including aplastic anemia, hemophagocytic lymphohistiocytosis, and cirrhosis of the liver.</p><p><strong>Recent findings: </strong>Studies have shown that increased IFN-γ negatively affects HSC homeostasis, skewing HSC towards differentiation over self-renewal and eventually causing exhaustion of the HSC compartment.</p><p><strong>Summary: </strong>Here, we explore the mechanisms by which IFN-γ regulates HSC in both normal and pathological conditions. We focus on the role of IFN-γ signaling in HSC fate decisions, and the transcriptional changes it elicits. Elucidating the mechanisms through which IFN-γ regulates HSCs may lead to new therapeutic options to prevent or treat adverse hematologic effects of the many diseases to which IFN-γ contributes.</p>","PeriodicalId":37444,"journal":{"name":"Current Stem Cell Reports","volume":"4 3","pages":"264-271"},"PeriodicalIF":2.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40778-018-0139-3","citationCount":"59","resultStr":"{\"title\":\"The Role of Interferon-Gamma in Hematopoietic Stem Cell Development, Homeostasis, and Disease.\",\"authors\":\"Daniel E Morales-Mantilla, Katherine Y King\",\"doi\":\"10.1007/s40778-018-0139-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Interferon-gamma (IFN-γ) is a pro-inflammatory cytokine that participates in the regulation of hematopoietic stem cells (HSC) during development and under homeostatic conditions. IFN-γ also plays a key pathogenic role in several diseases that affect hematopoiesis including aplastic anemia, hemophagocytic lymphohistiocytosis, and cirrhosis of the liver.</p><p><strong>Recent findings: </strong>Studies have shown that increased IFN-γ negatively affects HSC homeostasis, skewing HSC towards differentiation over self-renewal and eventually causing exhaustion of the HSC compartment.</p><p><strong>Summary: </strong>Here, we explore the mechanisms by which IFN-γ regulates HSC in both normal and pathological conditions. We focus on the role of IFN-γ signaling in HSC fate decisions, and the transcriptional changes it elicits. Elucidating the mechanisms through which IFN-γ regulates HSCs may lead to new therapeutic options to prevent or treat adverse hematologic effects of the many diseases to which IFN-γ contributes.</p>\",\"PeriodicalId\":37444,\"journal\":{\"name\":\"Current Stem Cell Reports\",\"volume\":\"4 3\",\"pages\":\"264-271\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40778-018-0139-3\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Stem Cell Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40778-018-0139-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Stem Cell Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40778-018-0139-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
The Role of Interferon-Gamma in Hematopoietic Stem Cell Development, Homeostasis, and Disease.
Purpose of review: Interferon-gamma (IFN-γ) is a pro-inflammatory cytokine that participates in the regulation of hematopoietic stem cells (HSC) during development and under homeostatic conditions. IFN-γ also plays a key pathogenic role in several diseases that affect hematopoiesis including aplastic anemia, hemophagocytic lymphohistiocytosis, and cirrhosis of the liver.
Recent findings: Studies have shown that increased IFN-γ negatively affects HSC homeostasis, skewing HSC towards differentiation over self-renewal and eventually causing exhaustion of the HSC compartment.
Summary: Here, we explore the mechanisms by which IFN-γ regulates HSC in both normal and pathological conditions. We focus on the role of IFN-γ signaling in HSC fate decisions, and the transcriptional changes it elicits. Elucidating the mechanisms through which IFN-γ regulates HSCs may lead to new therapeutic options to prevent or treat adverse hematologic effects of the many diseases to which IFN-γ contributes.
期刊介绍:
The goal of this journal is to publish cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. We aim to provide incisive, insightful, and balanced contributions from leading experts in each relevant domain that will be of immediate interest to a wide readership of clinicians, basic scientists, and translational investigators.
We accomplish this aim by appointing major authorities to serve as Section Editors in key subject areas across the discipline. Section Editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year on their topics, in a crisp and readable format. We also provide commentaries from well-known figures in the field, and an Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.