Leonidas A A Doumas, Robert G Morrison, Lindsey E Richland
{"title":"关系学习和类比推理中的个体差异:纵向变化的计算模型。","authors":"Leonidas A A Doumas, Robert G Morrison, Lindsey E Richland","doi":"10.3389/fpsyg.2018.01235","DOIUrl":null,"url":null,"abstract":"<p><p>Children's cognitive control and knowledge at school entry predict growth rates in analogical reasoning skill over time; however, the mechanisms by which these factors interact and impact learning are unclear. We propose that inhibitory control (IC) is critical for developing both the relational representations necessary to reason and the ability to use these representations in complex problem solving. We evaluate this hypothesis using computational simulations in a model of analogical thinking, Discovery of Relations by Analogy/Learning and Inference with Schemas and Analogy (DORA/LISA; Doumas et al., 2008). Longitudinal data from children who solved geometric analogy problems repeatedly over 6 months show three distinct learning trajectories though all gained somewhat: analogical reasoners throughout, non-analogical reasoners throughout, and transitional - those who start non-analogical and grew to be analogical. Varying the base level of top-down lateral inhibition in DORA affected the model's ability to learn relational representations, which, in conjunction with inhibition levels used in LISA during reasoning, simulated accuracy rates and error types seen in the three different learning trajectories. These simulations suggest that IC may not only impact reasoning ability but may also shape the ability to acquire relational knowledge given reasoning opportunities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1235"},"PeriodicalIF":4.6000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fpsyg.2018.01235","citationCount":"19","resultStr":"{\"title\":\"Individual Differences in Relational Learning and Analogical Reasoning: A Computational Model of Longitudinal Change.\",\"authors\":\"Leonidas A A Doumas, Robert G Morrison, Lindsey E Richland\",\"doi\":\"10.3389/fpsyg.2018.01235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Children's cognitive control and knowledge at school entry predict growth rates in analogical reasoning skill over time; however, the mechanisms by which these factors interact and impact learning are unclear. We propose that inhibitory control (IC) is critical for developing both the relational representations necessary to reason and the ability to use these representations in complex problem solving. We evaluate this hypothesis using computational simulations in a model of analogical thinking, Discovery of Relations by Analogy/Learning and Inference with Schemas and Analogy (DORA/LISA; Doumas et al., 2008). Longitudinal data from children who solved geometric analogy problems repeatedly over 6 months show three distinct learning trajectories though all gained somewhat: analogical reasoners throughout, non-analogical reasoners throughout, and transitional - those who start non-analogical and grew to be analogical. Varying the base level of top-down lateral inhibition in DORA affected the model's ability to learn relational representations, which, in conjunction with inhibition levels used in LISA during reasoning, simulated accuracy rates and error types seen in the three different learning trajectories. These simulations suggest that IC may not only impact reasoning ability but may also shape the ability to acquire relational knowledge given reasoning opportunities.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"1235\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2018-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3389/fpsyg.2018.01235\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3389/fpsyg.2018.01235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3389/fpsyg.2018.01235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Individual Differences in Relational Learning and Analogical Reasoning: A Computational Model of Longitudinal Change.
Children's cognitive control and knowledge at school entry predict growth rates in analogical reasoning skill over time; however, the mechanisms by which these factors interact and impact learning are unclear. We propose that inhibitory control (IC) is critical for developing both the relational representations necessary to reason and the ability to use these representations in complex problem solving. We evaluate this hypothesis using computational simulations in a model of analogical thinking, Discovery of Relations by Analogy/Learning and Inference with Schemas and Analogy (DORA/LISA; Doumas et al., 2008). Longitudinal data from children who solved geometric analogy problems repeatedly over 6 months show three distinct learning trajectories though all gained somewhat: analogical reasoners throughout, non-analogical reasoners throughout, and transitional - those who start non-analogical and grew to be analogical. Varying the base level of top-down lateral inhibition in DORA affected the model's ability to learn relational representations, which, in conjunction with inhibition levels used in LISA during reasoning, simulated accuracy rates and error types seen in the three different learning trajectories. These simulations suggest that IC may not only impact reasoning ability but may also shape the ability to acquire relational knowledge given reasoning opportunities.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.