{"title":"菌株应激:近交系小鼠肝脏研究。","authors":"Arlin B Rogers","doi":"10.3727/105221618X15337408678723","DOIUrl":null,"url":null,"abstract":"<p><p>Inbred mice are the most popular animals used for in vivo liver research. These mice are genetically defined, readily available, less expensive to maintain than larger animals, and enjoy a broad array of commercial reagents for scientific characterization. C57BL/6 mice are the most commonly used strain. However, other strains discussed, including BALB/c, C3H, A/J, and FVB/N, may be better suited to a particular disease model or line of investigation. Understanding the phenotypes of different inbred mouse strains facilitates informed decision making during experimental design. Model systems influenced by strain-dependent phenotype include tissue regeneration, drug-induced liver injury (DILI; e.g., acetaminophen), fibrosis (e.g., carbon tetrachloride, CCl₄), Fas-induced apoptosis, cholestasis, alcohol-induced liver disease and cirrhosis, nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH), and hepatocellular carcinoma (HCC). Thoughtful consideration of the strengths and weaknesses of each inbred strain in a given model system will lead to more robust data and a clearer understanding of translational relevance to human liver disease.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"19 1","pages":"61-67"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221618X15337408678723","citationCount":"19","resultStr":"{\"title\":\"Stress of Strains: Inbred Mice in Liver Research.\",\"authors\":\"Arlin B Rogers\",\"doi\":\"10.3727/105221618X15337408678723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inbred mice are the most popular animals used for in vivo liver research. These mice are genetically defined, readily available, less expensive to maintain than larger animals, and enjoy a broad array of commercial reagents for scientific characterization. C57BL/6 mice are the most commonly used strain. However, other strains discussed, including BALB/c, C3H, A/J, and FVB/N, may be better suited to a particular disease model or line of investigation. Understanding the phenotypes of different inbred mouse strains facilitates informed decision making during experimental design. Model systems influenced by strain-dependent phenotype include tissue regeneration, drug-induced liver injury (DILI; e.g., acetaminophen), fibrosis (e.g., carbon tetrachloride, CCl₄), Fas-induced apoptosis, cholestasis, alcohol-induced liver disease and cirrhosis, nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH), and hepatocellular carcinoma (HCC). Thoughtful consideration of the strengths and weaknesses of each inbred strain in a given model system will lead to more robust data and a clearer understanding of translational relevance to human liver disease.</p>\",\"PeriodicalId\":12502,\"journal\":{\"name\":\"Gene expression\",\"volume\":\"19 1\",\"pages\":\"61-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3727/105221618X15337408678723\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene expression\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3727/105221618X15337408678723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/105221618X15337408678723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Inbred mice are the most popular animals used for in vivo liver research. These mice are genetically defined, readily available, less expensive to maintain than larger animals, and enjoy a broad array of commercial reagents for scientific characterization. C57BL/6 mice are the most commonly used strain. However, other strains discussed, including BALB/c, C3H, A/J, and FVB/N, may be better suited to a particular disease model or line of investigation. Understanding the phenotypes of different inbred mouse strains facilitates informed decision making during experimental design. Model systems influenced by strain-dependent phenotype include tissue regeneration, drug-induced liver injury (DILI; e.g., acetaminophen), fibrosis (e.g., carbon tetrachloride, CCl₄), Fas-induced apoptosis, cholestasis, alcohol-induced liver disease and cirrhosis, nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH), and hepatocellular carcinoma (HCC). Thoughtful consideration of the strengths and weaknesses of each inbred strain in a given model system will lead to more robust data and a clearer understanding of translational relevance to human liver disease.
期刊介绍:
Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.