小GTPase RAS在多发性硬化症中的作用——探讨RAS GTPase在多发性硬化症病因中的作用。

Q2 Biochemistry, Genetics and Molecular Biology
Small GTPases Pub Date : 2020-09-01 Epub Date: 2018-09-18 DOI:10.1080/21541248.2018.1502591
Samantha Messina
{"title":"小GTPase RAS在多发性硬化症中的作用——探讨RAS GTPase在多发性硬化症病因中的作用。","authors":"Samantha Messina","doi":"10.1080/21541248.2018.1502591","DOIUrl":null,"url":null,"abstract":"<p><strong>Ras: </strong>signaling is involved in the development of autoimmunity in general. Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. It is widely recognized that a reduction of Foxp3+ regulatory T (Treg) cells is an immunological hallmark of MS, but the underlying mechanisms are unclear. In experimental autoimmune models, N-Ras and K-Ras inhibition triggers an anti-inflammatory effect up-regulating, <i>via</i> foxp3 elevation, the numbers and the functional suppressive properties of Tregs. Similarly, an increase in natural Tregs number during Experimental Autoimmune Encephalomyelitis (EAE) in <i>R-RAS</i> -/- mice results in attenuated disease. In humans, only <i>KRAS</i> GTPase isoform is involved in mechanism causing tolerance defects in rheumatoid arthritis (RA). T cells from these patients have increased transcription of <i>KRAS</i> (but not <i>NRAS</i>). <i>RAS</i> genes are major drivers in human cancers. Consequently, there has been considerable interest in developing anti-RAS inhibitors for cancer treatment. Despite efforts, no anti-RAS therapy has succeeded in the clinic. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mis-localization. The disappointing clinical outcome of Farnesyl Transferase Inhibitors (FTIs) in cancers has decreased interest in these drugs. However, FTIs suppress EAE by downregulation of myelin-reactive activated T-lymphocytes and statins are currently studied in clinical trials for MS. However, no pharmacologic approaches to targeting Ras proteins directly have yet succeeded. The therapeutic strategy to recover immune function through the restoration of impaired Tregs function with the mounting evidences regarding <i>KRAS</i> in autoimmune mediated disorder (MS, SLE, RA, T1D) suggest as working hypothesis the direct targeting <i>KRAS</i> activation using cancer-derived small molecules may be clinically relevant.</p><p><strong>Abbreviations: </strong>FTIs: Farnesyl Transferase Inhibitors; MS: Multiple Sclerosis; RRMS: Relapsing Remitting Multiple Sclerosis; PPMS: Primary Progressive Multiple Sclerosis; Tregs: regulatory T-cells; Foxp3: Forkhead box P3; EAE: Experimental Autoimmune Encephalomyelitis; T1D: Type 1 Diabete; SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; CNS: Central Nervous System; TMEV: Theiler's murine encephalomyelitis virus; FTS: farnesyl thiosalicylic acid; TCR: T-Cell Receptor; AIA: Adjuvant-induced Arthritis; EAN: experimental autoimmune neuritis; HVR: hypervariable region; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A reductase; PBMC: Peripheral Blood Mononuclear Cells.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":"11 5","pages":"312-319"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2018.1502591","citationCount":"4","resultStr":"{\"title\":\"Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis.\",\"authors\":\"Samantha Messina\",\"doi\":\"10.1080/21541248.2018.1502591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Ras: </strong>signaling is involved in the development of autoimmunity in general. Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. It is widely recognized that a reduction of Foxp3+ regulatory T (Treg) cells is an immunological hallmark of MS, but the underlying mechanisms are unclear. In experimental autoimmune models, N-Ras and K-Ras inhibition triggers an anti-inflammatory effect up-regulating, <i>via</i> foxp3 elevation, the numbers and the functional suppressive properties of Tregs. Similarly, an increase in natural Tregs number during Experimental Autoimmune Encephalomyelitis (EAE) in <i>R-RAS</i> -/- mice results in attenuated disease. In humans, only <i>KRAS</i> GTPase isoform is involved in mechanism causing tolerance defects in rheumatoid arthritis (RA). T cells from these patients have increased transcription of <i>KRAS</i> (but not <i>NRAS</i>). <i>RAS</i> genes are major drivers in human cancers. Consequently, there has been considerable interest in developing anti-RAS inhibitors for cancer treatment. Despite efforts, no anti-RAS therapy has succeeded in the clinic. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mis-localization. The disappointing clinical outcome of Farnesyl Transferase Inhibitors (FTIs) in cancers has decreased interest in these drugs. However, FTIs suppress EAE by downregulation of myelin-reactive activated T-lymphocytes and statins are currently studied in clinical trials for MS. However, no pharmacologic approaches to targeting Ras proteins directly have yet succeeded. The therapeutic strategy to recover immune function through the restoration of impaired Tregs function with the mounting evidences regarding <i>KRAS</i> in autoimmune mediated disorder (MS, SLE, RA, T1D) suggest as working hypothesis the direct targeting <i>KRAS</i> activation using cancer-derived small molecules may be clinically relevant.</p><p><strong>Abbreviations: </strong>FTIs: Farnesyl Transferase Inhibitors; MS: Multiple Sclerosis; RRMS: Relapsing Remitting Multiple Sclerosis; PPMS: Primary Progressive Multiple Sclerosis; Tregs: regulatory T-cells; Foxp3: Forkhead box P3; EAE: Experimental Autoimmune Encephalomyelitis; T1D: Type 1 Diabete; SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; CNS: Central Nervous System; TMEV: Theiler's murine encephalomyelitis virus; FTS: farnesyl thiosalicylic acid; TCR: T-Cell Receptor; AIA: Adjuvant-induced Arthritis; EAN: experimental autoimmune neuritis; HVR: hypervariable region; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A reductase; PBMC: Peripheral Blood Mononuclear Cells.</p>\",\"PeriodicalId\":22139,\"journal\":{\"name\":\"Small GTPases\",\"volume\":\"11 5\",\"pages\":\"312-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21541248.2018.1502591\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small GTPases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21541248.2018.1502591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2018.1502591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

Ras:信号通常参与自身免疫的发展。多发性硬化(MS)是一种T细胞介导的中枢神经系统自身免疫性疾病。人们普遍认为Foxp3+调节性T (Treg)细胞的减少是MS的一个免疫学标志,但其潜在机制尚不清楚。在实验性自身免疫模型中,N-Ras和K-Ras抑制通过foxp3的升高引发Tregs的数量和功能抑制特性的抗炎作用上调。同样,在R-RAS -/-小鼠的实验性自身免疫性脑脊髓炎(EAE)期间,天然Tregs数量的增加导致疾病减弱。在人类中,只有KRAS GTPase亚型参与类风湿关节炎(RA)耐受性缺陷的机制。这些患者的T细胞中KRAS的转录增加(但NRAS没有)。RAS基因是人类癌症的主要驱动因素。因此,人们对开发用于癌症治疗的抗ras抑制剂非常感兴趣。尽管做出了努力,抗ras疗法尚未在临床上取得成功。目前临床应用的主要策略是通过阻断Ras的翻译后修饰,诱导其错定位,间接抑制活化的Ras。法尼基转移酶抑制剂(FTIs)治疗癌症的临床结果令人失望,这降低了人们对这些药物的兴趣。然而,FTIs通过下调髓磷脂反应性活化t淋巴细胞和他汀类药物抑制EAE,目前正在ms的临床试验中进行研究。然而,直接靶向Ras蛋白的药理学方法尚未成功。通过恢复受损的Tregs功能来恢复免疫功能的治疗策略,以及越来越多的证据表明KRAS在自身免疫性疾病(MS, SLE, RA, T1D)中的作用,作为工作假设,使用癌症衍生的小分子直接靶向KRAS激活可能与临床相关。FTIs:法尼基转移酶抑制剂;MS:多发性硬化症;RRMS:复发缓解多发性硬化;原发性进行性多发性硬化症;Tregs:调节性t细胞;Foxp3:叉头箱P3;EAE:实验性自身免疫性脑脊髓炎;T1D: 1型糖尿病;系统性红斑狼疮;RA:类风湿性关节炎;CNS:中枢神经系统;TMEV:泰勒氏小鼠脑脊髓炎病毒;FTS:法尼基硫代水杨酸;TCR: t细胞受体;AIA:佐剂性关节炎;EAN:实验性自身免疫性神经炎;HVR:高变区;HMG-CoA: 3-羟基-3-甲基戊二酰辅酶A还原酶;外周血单个核细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis.

Ras: signaling is involved in the development of autoimmunity in general. Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. It is widely recognized that a reduction of Foxp3+ regulatory T (Treg) cells is an immunological hallmark of MS, but the underlying mechanisms are unclear. In experimental autoimmune models, N-Ras and K-Ras inhibition triggers an anti-inflammatory effect up-regulating, via foxp3 elevation, the numbers and the functional suppressive properties of Tregs. Similarly, an increase in natural Tregs number during Experimental Autoimmune Encephalomyelitis (EAE) in R-RAS -/- mice results in attenuated disease. In humans, only KRAS GTPase isoform is involved in mechanism causing tolerance defects in rheumatoid arthritis (RA). T cells from these patients have increased transcription of KRAS (but not NRAS). RAS genes are major drivers in human cancers. Consequently, there has been considerable interest in developing anti-RAS inhibitors for cancer treatment. Despite efforts, no anti-RAS therapy has succeeded in the clinic. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mis-localization. The disappointing clinical outcome of Farnesyl Transferase Inhibitors (FTIs) in cancers has decreased interest in these drugs. However, FTIs suppress EAE by downregulation of myelin-reactive activated T-lymphocytes and statins are currently studied in clinical trials for MS. However, no pharmacologic approaches to targeting Ras proteins directly have yet succeeded. The therapeutic strategy to recover immune function through the restoration of impaired Tregs function with the mounting evidences regarding KRAS in autoimmune mediated disorder (MS, SLE, RA, T1D) suggest as working hypothesis the direct targeting KRAS activation using cancer-derived small molecules may be clinically relevant.

Abbreviations: FTIs: Farnesyl Transferase Inhibitors; MS: Multiple Sclerosis; RRMS: Relapsing Remitting Multiple Sclerosis; PPMS: Primary Progressive Multiple Sclerosis; Tregs: regulatory T-cells; Foxp3: Forkhead box P3; EAE: Experimental Autoimmune Encephalomyelitis; T1D: Type 1 Diabete; SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; CNS: Central Nervous System; TMEV: Theiler's murine encephalomyelitis virus; FTS: farnesyl thiosalicylic acid; TCR: T-Cell Receptor; AIA: Adjuvant-induced Arthritis; EAN: experimental autoimmune neuritis; HVR: hypervariable region; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A reductase; PBMC: Peripheral Blood Mononuclear Cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small GTPases
Small GTPases Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.10
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信