用于分析和建模基因组结构和组织的计算方法。

IF 7.9 Q1 Medicine
Dejun Lin, Giancarlo Bonora, Galip Gürkan Yardımcı, William S Noble
{"title":"用于分析和建模基因组结构和组织的计算方法。","authors":"Dejun Lin,&nbsp;Giancarlo Bonora,&nbsp;Galip Gürkan Yardımcı,&nbsp;William S Noble","doi":"10.1002/wsbm.1435","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in chromosome conformation capture technologies have led to the discovery of previously unappreciated structural features of chromatin. Computational analysis has been critical in detecting these features and thereby helping to uncover the building blocks of genome architecture. Algorithms are being developed to integrate these architectural features to construct better three-dimensional (3D) models of the genome. These computational methods have revealed the importance of 3D genome organization to essential biological processes. In this article, we review the state of the art in analytic and modeling techniques with a focus on their application to answering various biological questions related to chromatin structure. We summarize the limitations of these computational techniques and suggest future directions, including the importance of incorporating multiple sources of experimental data in building a more comprehensive model of the genome. This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Mechanistic Models.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"11 1","pages":"e1435"},"PeriodicalIF":7.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1435","citationCount":"30","resultStr":"{\"title\":\"Computational methods for analyzing and modeling genome structure and organization.\",\"authors\":\"Dejun Lin,&nbsp;Giancarlo Bonora,&nbsp;Galip Gürkan Yardımcı,&nbsp;William S Noble\",\"doi\":\"10.1002/wsbm.1435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in chromosome conformation capture technologies have led to the discovery of previously unappreciated structural features of chromatin. Computational analysis has been critical in detecting these features and thereby helping to uncover the building blocks of genome architecture. Algorithms are being developed to integrate these architectural features to construct better three-dimensional (3D) models of the genome. These computational methods have revealed the importance of 3D genome organization to essential biological processes. In this article, we review the state of the art in analytic and modeling techniques with a focus on their application to answering various biological questions related to chromatin structure. We summarize the limitations of these computational techniques and suggest future directions, including the importance of incorporating multiple sources of experimental data in building a more comprehensive model of the genome. This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Mechanistic Models.</p>\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":\"11 1\",\"pages\":\"e1435\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wsbm.1435\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 30

摘要

染色体构象捕获技术的最新进展导致发现了以前未被重视的染色质结构特征。计算分析在检测这些特征方面至关重要,从而有助于揭示基因组结构的构建块。正在开发算法来整合这些结构特征,以构建更好的基因组三维(3D)模型。这些计算方法揭示了三维基因组组织对基本生物过程的重要性。在这篇文章中,我们回顾了分析和建模技术的现状,重点是它们在回答与染色质结构相关的各种生物学问题方面的应用。我们总结了这些计算技术的局限性,并提出了未来的方向,包括在构建更全面的基因组模型时结合多种实验数据来源的重要性。本文分类如下:分析和计算方法>计算方法实验室方法和技术>系统特性和过程的遗传/基因组方法模型>机械模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational methods for analyzing and modeling genome structure and organization.

Computational methods for analyzing and modeling genome structure and organization.

Computational methods for analyzing and modeling genome structure and organization.

Recent advances in chromosome conformation capture technologies have led to the discovery of previously unappreciated structural features of chromatin. Computational analysis has been critical in detecting these features and thereby helping to uncover the building blocks of genome architecture. Algorithms are being developed to integrate these architectural features to construct better three-dimensional (3D) models of the genome. These computational methods have revealed the importance of 3D genome organization to essential biological processes. In this article, we review the state of the art in analytic and modeling techniques with a focus on their application to answering various biological questions related to chromatin structure. We summarize the limitations of these computational techniques and suggest future directions, including the importance of incorporating multiple sources of experimental data in building a more comprehensive model of the genome. This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Mechanistic Models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信