重新定义干细胞-心肌细胞相互作用:关注旁分泌效应方法。

IF 1.1 Q4 CELL & TISSUE ENGINEERING
Journal of Stem Cells & Regenerative Medicine Pub Date : 2018-05-30 eCollection Date: 2018-01-01
Samiksha Mahapatra, Dianna Martin, G Ian Gallicano
{"title":"重新定义干细胞-心肌细胞相互作用:关注旁分泌效应方法。","authors":"Samiksha Mahapatra,&nbsp;Dianna Martin,&nbsp;G Ian Gallicano","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell research for treating or curing ischemic heart disease has, till date, culminated in three basic approaches: the use of induced pluripotent stem cell (iPSC) technology; reprogramming cardiac fibroblasts; and cardiovascular progenitor cell regeneration. As each approach has been shown to have its advantages and disadvantages, exploiting the advantages while minimizing the disadvantages has been a challenge. Using human germline pluripotent stem cells (hgPSCs) along with a modified version of a relatively novel cell-expansion culture methodology to induce quick, indefinite expansion of normally slow growing hgPSCs, it was possible to emphasize the advantages of all three approaches. We consistently found that unipotent germline stem cells, when removed from their niche and cultured in the correct medium, expressed endogenously, pluripotency genes, which induced them to become hgPSCs. These cells are then capable of producing cell types from all three germ layers. Upon differentiation into cardiac lineages, our data consistently showed that they not only expressed cardiac genes, but also expressed cardiac-promoting paracrine factors. Taking these data a step further, we found that hgPSC-derived cardiac cells could integrate into cardiac tissue <i>in vivo</i>. Note, while the work presented here was based on testes-derived hgPSCs, data from other laboratories have shown that ovaries contain very similar types of stem cells that can give rise to hgPSCs. As a result, hgPSCs should be considered a viable option for eventual use in patients, male or female, with ischemic heart disease.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Re-Defining Stem Cell-Cardiomyocyte Interactions: Focusing on the Paracrine Effector Approach.\",\"authors\":\"Samiksha Mahapatra,&nbsp;Dianna Martin,&nbsp;G Ian Gallicano\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cell research for treating or curing ischemic heart disease has, till date, culminated in three basic approaches: the use of induced pluripotent stem cell (iPSC) technology; reprogramming cardiac fibroblasts; and cardiovascular progenitor cell regeneration. As each approach has been shown to have its advantages and disadvantages, exploiting the advantages while minimizing the disadvantages has been a challenge. Using human germline pluripotent stem cells (hgPSCs) along with a modified version of a relatively novel cell-expansion culture methodology to induce quick, indefinite expansion of normally slow growing hgPSCs, it was possible to emphasize the advantages of all three approaches. We consistently found that unipotent germline stem cells, when removed from their niche and cultured in the correct medium, expressed endogenously, pluripotency genes, which induced them to become hgPSCs. These cells are then capable of producing cell types from all three germ layers. Upon differentiation into cardiac lineages, our data consistently showed that they not only expressed cardiac genes, but also expressed cardiac-promoting paracrine factors. Taking these data a step further, we found that hgPSC-derived cardiac cells could integrate into cardiac tissue <i>in vivo</i>. Note, while the work presented here was based on testes-derived hgPSCs, data from other laboratories have shown that ovaries contain very similar types of stem cells that can give rise to hgPSCs. As a result, hgPSCs should be considered a viable option for eventual use in patients, male or female, with ischemic heart disease.</p>\",\"PeriodicalId\":17155,\"journal\":{\"name\":\"Journal of Stem Cells & Regenerative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stem Cells & Regenerative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells & Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,用于治疗或治愈缺血性心脏病的干细胞研究主要有三种基本方法:使用诱导多能干细胞(iPSC)技术;心脏成纤维细胞重编程;以及心血管祖细胞再生。由于每种方法都有其优点和缺点,因此在尽量减少缺点的同时利用优点一直是一个挑战。利用人类生殖系多能干细胞(hgPSCs)和一种相对新颖的细胞扩增培养方法的改进版本来诱导通常生长缓慢的hgPSCs快速、无限扩增,有可能强调所有三种方法的优势。我们一致发现,当单能性生殖系干细胞从其生态位中取出并在正确的培养基中培养时,会表达内源性多能性基因,从而诱导它们成为hgPSCs。然后,这些细胞能够从所有三种胚层中产生细胞类型。在分化成心脏谱系后,我们的数据一致表明,它们不仅表达心脏基因,还表达促进心脏的旁分泌因子。将这些数据进一步推进,我们发现hgpsc衍生的心脏细胞可以在体内整合到心脏组织中。注意,虽然这里的工作是基于睾丸衍生的hgPSCs,但来自其他实验室的数据表明,卵巢含有非常相似类型的干细胞,可以产生hgPSCs。因此,hgPSCs应被视为最终用于缺血性心脏病患者的可行选择,无论男性还是女性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Re-Defining Stem Cell-Cardiomyocyte Interactions: Focusing on the Paracrine Effector Approach.

Re-Defining Stem Cell-Cardiomyocyte Interactions: Focusing on the Paracrine Effector Approach.

Re-Defining Stem Cell-Cardiomyocyte Interactions: Focusing on the Paracrine Effector Approach.

Re-Defining Stem Cell-Cardiomyocyte Interactions: Focusing on the Paracrine Effector Approach.

Stem cell research for treating or curing ischemic heart disease has, till date, culminated in three basic approaches: the use of induced pluripotent stem cell (iPSC) technology; reprogramming cardiac fibroblasts; and cardiovascular progenitor cell regeneration. As each approach has been shown to have its advantages and disadvantages, exploiting the advantages while minimizing the disadvantages has been a challenge. Using human germline pluripotent stem cells (hgPSCs) along with a modified version of a relatively novel cell-expansion culture methodology to induce quick, indefinite expansion of normally slow growing hgPSCs, it was possible to emphasize the advantages of all three approaches. We consistently found that unipotent germline stem cells, when removed from their niche and cultured in the correct medium, expressed endogenously, pluripotency genes, which induced them to become hgPSCs. These cells are then capable of producing cell types from all three germ layers. Upon differentiation into cardiac lineages, our data consistently showed that they not only expressed cardiac genes, but also expressed cardiac-promoting paracrine factors. Taking these data a step further, we found that hgPSC-derived cardiac cells could integrate into cardiac tissue in vivo. Note, while the work presented here was based on testes-derived hgPSCs, data from other laboratories have shown that ovaries contain very similar types of stem cells that can give rise to hgPSCs. As a result, hgPSCs should be considered a viable option for eventual use in patients, male or female, with ischemic heart disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
5
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信