胶质母细胞瘤和生存预测。

Zeina Shboul, Lasitha Vidyaratne, Mahbubul Alam, Syed M S Reza, Khan M Iftekharuddin
{"title":"胶质母细胞瘤和生存预测。","authors":"Zeina Shboul, Lasitha Vidyaratne, Mahbubul Alam, Syed M S Reza, Khan M Iftekharuddin","doi":"10.1007/978-3-319-75238-9_31","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma is a stage IV highly invasive astrocytoma tumor. Its heterogeneous appearance in MRI poses critical challenge in diagnosis, prognosis and survival prediction. This work extracts a total of 1207 different types of texture and other features, tests their significance and prognostic values, and then utilizes the most significant features with Random Forest regression model to perform survival prediction. We use 163 cases from BraTS17 training dataset for evaluation of the proposed model. A 10-fold cross validation offers normalized root mean square error of 30% for the training dataset and the cross validated accuracy of 63%, respectively.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"10670 ","pages":"358-368"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-75238-9_31","citationCount":"29","resultStr":"{\"title\":\"Glioblastoma and Survival Prediction.\",\"authors\":\"Zeina Shboul, Lasitha Vidyaratne, Mahbubul Alam, Syed M S Reza, Khan M Iftekharuddin\",\"doi\":\"10.1007/978-3-319-75238-9_31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma is a stage IV highly invasive astrocytoma tumor. Its heterogeneous appearance in MRI poses critical challenge in diagnosis, prognosis and survival prediction. This work extracts a total of 1207 different types of texture and other features, tests their significance and prognostic values, and then utilizes the most significant features with Random Forest regression model to perform survival prediction. We use 163 cases from BraTS17 training dataset for evaluation of the proposed model. A 10-fold cross validation offers normalized root mean square error of 30% for the training dataset and the cross validated accuracy of 63%, respectively.</p>\",\"PeriodicalId\":72455,\"journal\":{\"name\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"volume\":\"10670 \",\"pages\":\"358-368\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-75238-9_31\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-75238-9_31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-75238-9_31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

胶质母细胞瘤是一种IV期高度侵袭性星形细胞瘤。其在MRI上的异质性表现对诊断、预后和生存预测提出了重大挑战。本工作共提取1207种不同类型的纹理和其他特征,对其显著性和预测值进行检验,然后利用最显著的特征与随机森林回归模型进行生存预测。我们使用BraTS17训练数据集中的163个案例来评估所提出的模型。10倍交叉验证为训练数据集提供了30%的归一化均方根误差和63%的交叉验证精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Glioblastoma and Survival Prediction.

Glioblastoma and Survival Prediction.

Glioblastoma and Survival Prediction.

Glioblastoma is a stage IV highly invasive astrocytoma tumor. Its heterogeneous appearance in MRI poses critical challenge in diagnosis, prognosis and survival prediction. This work extracts a total of 1207 different types of texture and other features, tests their significance and prognostic values, and then utilizes the most significant features with Random Forest regression model to perform survival prediction. We use 163 cases from BraTS17 training dataset for evaluation of the proposed model. A 10-fold cross validation offers normalized root mean square error of 30% for the training dataset and the cross validated accuracy of 63%, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信