真菌之战:担子菌在木材腐烂中的战斗

IF 14.1 1区 生物学 Q1 MYCOLOGY
J. Hiscox, J. O'Leary, L. Boddy
{"title":"真菌之战:担子菌在木材腐烂中的战斗","authors":"J. Hiscox,&nbsp;J. O'Leary,&nbsp;L. Boddy","doi":"10.1016/j.simyco.2018.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the mechanisms underlying wood decay basidiomycete community dynamics is crucial for fully understanding decomposition processes, and for modelling ecosystem function and resilience to environmental change. Competition drives community development in decaying woody resources, with interactions occurring at a distance, following physical contact, and through specialised relationships such as mycoparasitism. Outcomes of combative interactions range from replacement, where one mycelium displaces another, to deadlock, where neither combatant captures territory from the other; and a spectrum of intermediate outcomes (i.e. partial or mutual replacement) lie between these extremes. Many wood decay basidiomycetes coexist within a resource, in a complex and dynamic community, and new research techniques are focussing on spatial orientation of interactions in 3 dimensions, as opposed to historical two-dimensional research. Not only do interactions drive changes in species composition and thus wood decomposition rate, they also may have industrial applications in biocontrol of pathogenic or nuisance fungi, enzyme production, and in the production of novel antifungals and antibiotics. Altogether, fungal interactions are a fascinating and important field of study.</p></div>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":null,"pages":null},"PeriodicalIF":14.1000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.simyco.2018.02.003","citationCount":"104","resultStr":"{\"title\":\"Fungus wars: basidiomycete battles in wood decay\",\"authors\":\"J. Hiscox,&nbsp;J. O'Leary,&nbsp;L. Boddy\",\"doi\":\"10.1016/j.simyco.2018.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the mechanisms underlying wood decay basidiomycete community dynamics is crucial for fully understanding decomposition processes, and for modelling ecosystem function and resilience to environmental change. Competition drives community development in decaying woody resources, with interactions occurring at a distance, following physical contact, and through specialised relationships such as mycoparasitism. Outcomes of combative interactions range from replacement, where one mycelium displaces another, to deadlock, where neither combatant captures territory from the other; and a spectrum of intermediate outcomes (i.e. partial or mutual replacement) lie between these extremes. Many wood decay basidiomycetes coexist within a resource, in a complex and dynamic community, and new research techniques are focussing on spatial orientation of interactions in 3 dimensions, as opposed to historical two-dimensional research. Not only do interactions drive changes in species composition and thus wood decomposition rate, they also may have industrial applications in biocontrol of pathogenic or nuisance fungi, enzyme production, and in the production of novel antifungals and antibiotics. Altogether, fungal interactions are a fascinating and important field of study.</p></div>\",\"PeriodicalId\":22036,\"journal\":{\"name\":\"Studies in Mycology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.simyco.2018.02.003\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Mycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016606161830006X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Mycology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016606161830006X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 104

摘要

了解木材腐烂的机制,担子菌群落动态对于充分理解分解过程,以及模拟生态系统功能和对环境变化的适应能力至关重要。在腐烂的木质资源中,竞争推动了社区的发展,相互作用发生在距离之外,在身体接触之后,通过真菌寄生等特殊关系。战斗相互作用的结果包括替换(一个菌丝体取代另一个菌丝体)和僵局(战斗双方都没有从另一方手中夺取领土);在这两个极端之间还有一系列中间结果(即部分替代或相互替代)。许多木材腐烂担子菌共存于一个资源中,在一个复杂和动态的群落中,新的研究技术侧重于三维相互作用的空间方向,而不是历史上的二维研究。相互作用不仅驱动物种组成和木材分解速率的变化,还可能在病原真菌或有害真菌的生物防治、酶生产以及新型抗真菌剂和抗生素的生产中具有工业应用。总之,真菌相互作用是一个迷人而重要的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fungus wars: basidiomycete battles in wood decay

Fungus wars: basidiomycete battles in wood decay

Fungus wars: basidiomycete battles in wood decay

Fungus wars: basidiomycete battles in wood decay

Understanding the mechanisms underlying wood decay basidiomycete community dynamics is crucial for fully understanding decomposition processes, and for modelling ecosystem function and resilience to environmental change. Competition drives community development in decaying woody resources, with interactions occurring at a distance, following physical contact, and through specialised relationships such as mycoparasitism. Outcomes of combative interactions range from replacement, where one mycelium displaces another, to deadlock, where neither combatant captures territory from the other; and a spectrum of intermediate outcomes (i.e. partial or mutual replacement) lie between these extremes. Many wood decay basidiomycetes coexist within a resource, in a complex and dynamic community, and new research techniques are focussing on spatial orientation of interactions in 3 dimensions, as opposed to historical two-dimensional research. Not only do interactions drive changes in species composition and thus wood decomposition rate, they also may have industrial applications in biocontrol of pathogenic or nuisance fungi, enzyme production, and in the production of novel antifungals and antibiotics. Altogether, fungal interactions are a fascinating and important field of study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Mycology
Studies in Mycology 生物-真菌学
CiteScore
35.60
自引率
3.00%
发文量
7
期刊介绍: The international journal Studies in Mycology focuses on advancing the understanding of filamentous fungi, yeasts, and various aspects of mycology. It publishes comprehensive systematic monographs as well as topical issues covering a wide range of subjects including biotechnology, ecology, molecular biology, pathology, and systematics. This Open-Access journal offers unrestricted access to its content. Each issue of Studies in Mycology consists of around 5 to 6 papers, either in the form of monographs or special focused topics. Unlike traditional length restrictions, the journal encourages submissions of manuscripts with a minimum of 50 A4 pages in print. This ensures a thorough exploration and presentation of the research findings, maximizing the depth of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信