Benudhara Pati, Satyabrata Sendh, Bijayashree Sahu, Sunil Pani, Nivedita Jena and Naresh Chandra Bal
{"title":"调节能量平衡对抗肥胖的药理学策略的最新进展","authors":"Benudhara Pati, Satyabrata Sendh, Bijayashree Sahu, Sunil Pani, Nivedita Jena and Naresh Chandra Bal","doi":"10.1039/D3MD00107E","DOIUrl":null,"url":null,"abstract":"<p >The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake <em>via</em> inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 8","pages":" 1429-1445"},"PeriodicalIF":3.5970,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/md/d3md00107e?page=search","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in pharmacological strategies to modulate energy balance for combating obesity\",\"authors\":\"Benudhara Pati, Satyabrata Sendh, Bijayashree Sahu, Sunil Pani, Nivedita Jena and Naresh Chandra Bal\",\"doi\":\"10.1039/D3MD00107E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake <em>via</em> inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\" 8\",\"pages\":\" 1429-1445\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/md/d3md00107e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/md/d3md00107e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"3","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/md/d3md00107e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Recent advancements in pharmacological strategies to modulate energy balance for combating obesity
The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake via inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.