{"title":"纹状体神经通路的运动控制。","authors":"Bing-Wei Wang, Xiao-Ning Yang, Chen-Yu Zhang, Chong-Jiu Chen, Shi-Gong Zhu, Rui-Mao Zheng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Striatum is the central structure controlling movement. It plays a pivotal role in the regulation of voluntary movement, unconscious movement, muscle tone, posture adjustment and fine movement. Dysfunction of striatum causes a variety of movement disorders ranging from the hypokinetic disorders with increased muscle tone, such as Parkinson's disease, to the hyperkinetic disorders with decreased muscle tone, such as Huntington's disease. It is generally recognized that striatum receives the neural movement signals from the motor cortex, and then processes and modifies these signals and subsequently transfers the signals back to the motor cortex via thalamus for execution of the movement through pyramidal system. The movement control function of striatum depends on a complex neural circuit system. In this review, the studies on the movement control function of striatum as well as the striatal neural circuit system are summarized with an emphasis on the progress made during recent years for better understanding the mechanism underlying the movement control function as well as the disease association of striatum.</p>","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 4","pages":"241-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Movement Control of Striatum Neural Pathway].\",\"authors\":\"Bing-Wei Wang, Xiao-Ning Yang, Chen-Yu Zhang, Chong-Jiu Chen, Shi-Gong Zhu, Rui-Mao Zheng\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Striatum is the central structure controlling movement. It plays a pivotal role in the regulation of voluntary movement, unconscious movement, muscle tone, posture adjustment and fine movement. Dysfunction of striatum causes a variety of movement disorders ranging from the hypokinetic disorders with increased muscle tone, such as Parkinson's disease, to the hyperkinetic disorders with decreased muscle tone, such as Huntington's disease. It is generally recognized that striatum receives the neural movement signals from the motor cortex, and then processes and modifies these signals and subsequently transfers the signals back to the motor cortex via thalamus for execution of the movement through pyramidal system. The movement control function of striatum depends on a complex neural circuit system. In this review, the studies on the movement control function of striatum as well as the striatal neural circuit system are summarized with an emphasis on the progress made during recent years for better understanding the mechanism underlying the movement control function as well as the disease association of striatum.</p>\",\"PeriodicalId\":58541,\"journal\":{\"name\":\"生理科学进展\",\"volume\":\"47 4\",\"pages\":\"241-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生理科学进展\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理科学进展","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Striatum is the central structure controlling movement. It plays a pivotal role in the regulation of voluntary movement, unconscious movement, muscle tone, posture adjustment and fine movement. Dysfunction of striatum causes a variety of movement disorders ranging from the hypokinetic disorders with increased muscle tone, such as Parkinson's disease, to the hyperkinetic disorders with decreased muscle tone, such as Huntington's disease. It is generally recognized that striatum receives the neural movement signals from the motor cortex, and then processes and modifies these signals and subsequently transfers the signals back to the motor cortex via thalamus for execution of the movement through pyramidal system. The movement control function of striatum depends on a complex neural circuit system. In this review, the studies on the movement control function of striatum as well as the striatal neural circuit system are summarized with an emphasis on the progress made during recent years for better understanding the mechanism underlying the movement control function as well as the disease association of striatum.
期刊介绍:
Progress in Physiological Sciences is a bimonthly academic journal co-sponsored by Chinese Association for Science and Technology, Chinese Physiological Society and Peking University. It was founded in March 1957. China Core Journal of Science and Technology, China Core Journal of Medicine and Health, Statistical source journal of Chinese Academic Journal Impact Factor Annual Report, China Science Citation Database CSCD (1996-2018); Overview of Key Chinese Core Journals of Peking University (1992-2020, 2023-), It has been reported by China Journal Network, China Academic Journals (Optical Disc Edition), China Biomedical Citation Database CMCI, Science and Technology Journals World Impact Index (WJCI) (2022), Wanfang Data Resource System digital Journal Group (China Core Journal Database); American Medical Index (IM), American Chemical Abstracts (CA), etc.
Progress in Physiological Sciences is published at home and abroad. The journal comprehensively reports the new progress in physiological sciences at home and abroad, and publishes review papers related to physiological sciences, namely physiology, biochemistry and molecular biology, pharmacology, pathophysiology, biophysics, nutrition, etc.