哺乳动物神经系统gaba能和甘氨酸能回路的组装和维持。

IF 4 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Clare R Gamlin, Wan-Qing Yu, Rachel O L Wong, Mrinalini Hoon
{"title":"哺乳动物神经系统gaba能和甘氨酸能回路的组装和维持。","authors":"Clare R Gamlin,&nbsp;Wan-Qing Yu,&nbsp;Rachel O L Wong,&nbsp;Mrinalini Hoon","doi":"10.1186/s13064-018-0109-6","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"13 1","pages":"12"},"PeriodicalIF":4.0000,"publicationDate":"2018-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-018-0109-6","citationCount":"20","resultStr":"{\"title\":\"Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system.\",\"authors\":\"Clare R Gamlin,&nbsp;Wan-Qing Yu,&nbsp;Rachel O L Wong,&nbsp;Mrinalini Hoon\",\"doi\":\"10.1186/s13064-018-0109-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.</p>\",\"PeriodicalId\":49764,\"journal\":{\"name\":\"Neural Development\",\"volume\":\"13 1\",\"pages\":\"12\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2018-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13064-018-0109-6\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13064-018-0109-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13064-018-0109-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 20

摘要

中枢神经系统(CNS)的抑制是由两种神经递质介导的:γ -氨基丁酸(GABA)和甘氨酸。抑制性突触通常是gaba能或甘氨酸能,尽管也有突触共同释放这两种神经递质。与兴奋性神经回路相比,调控突触伴侣选择和抑制性神经回路线路模式的细胞和分子机制所知甚少。然而,最近的工作已经开始填补这一知识空白,提供了更深入的了解gaba能和甘氨酸能回路的组装和维护是否依赖于共同或独特的机制。在此,我们总结并比较了调节突触伴侣选择,促进gaba能突触和甘氨酸能突触及其各自的连线模式的形成、完善、成熟和维持的发育机制。我们强调中枢神经系统的某些部分如何在其抑制性突触中表现出抑制性递质或受体组成类型的发育变化。我们还考虑了一种类型的抑制性连接的发展或维持的扰动如何影响同一回路中的其他抑制性突触类型。深入了解gaba能和甘氨酸能输入的发展和维持机制,以及共同释放这两种神经递质的输入,有助于制定治疗突触抑制障碍的综合治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system.

Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system.

Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system.

Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system.

Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Development
Neural Development 生物-发育生物学
CiteScore
6.60
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Neural Development is a peer-reviewed open access, online journal, which features studies that use molecular, cellular, physiological or behavioral methods to provide novel insights into the mechanisms that underlie the formation of the nervous system. Neural Development aims to discover how the nervous system arises and acquires the abilities to sense the world and control adaptive motor output. The field includes analysis of how progenitor cells form a nervous system during embryogenesis, and how the initially formed neural circuits are shaped by experience during early postnatal life. Some studies use well-established, genetically accessible model systems, but valuable insights are also obtained from less traditional models that provide behavioral or evolutionary insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信